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Abstract. Third political parties are influential in shaping American politics.
In this work we study the spread of a third party ideology in a voting popu-
lation where we assume that party members/activists are more influential in
recruiting new third party voters than non-member third party voters. The
study uses an epidemiological metaphor to develop a theoretical model with
nonlinear ordinary differential equations as applied to a case study, the Green
Party. Considering long-term behavior, we identify three threshold parame-
ters in our model that describe the different possible scenarios for the political
party and its spread. We also apply the model to the study of the Green
Party’s growth using voting and registration data in six states and the District
of Columbia to identify and explain trends over the past decade. Our system
produces a backward bifurcation that helps identify conditions under which a
sufficiently dedicated activist core can enable a third party to thrive, under
conditions which would not normally allow it to arise. Our results explain the
critical role activists play in sustaining grassroots movements under adverse
conditions.

1. Introduction. The 2000 United States presidential election was for many a
testimony to the impact of third parties in a traditionally bipartisan government.
Ralph Nader, the presidential candidate for the Green Party, won 2% of the popular
vote, a percentage that many attribute to the defeat of Democratic candidate Al
Gore [35]. The Green Party captured a seemingly insignificant number of votes
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relative to majority percentages, yet its presence in the election ultimately served
to shape American politics for the years following. This incident demonstrates how
third parties, often emerging as grassroots movements (i.e., movements at the local
level rather than at the center of major political activity), can ultimately impact at
the national level, hence prompting the need to study their emergence and spread
within a voting population.

Third parties are defined as political parties operating along with two major par-
ties in a bipartisan system over a limited period of time (where we define a limited
period of time as a range of a few years). For the purposes of this paper we apply
this definition to all minor parties. Traditionally, third parties have served as venues
of political dissent for voting individuals dissatisfied with the major candidates in
an election. They often tackle specific issues otherwise ignored by major political
parties, thus relinquishing popular support nationwide. As Supreme Court Jus-
tice Earl Warren wrote in 1957, “History has amply proved the virtue of political
activity by minority, dissident groups, which innumerable times have been in the
vanguard of democratic thought and whose programs were ultimately accepted”
[37]. Hence, while third parties rarely capture the majority vote, their agendas,
often incorporated into major party platforms, are significant nonetheless.

Given the potential relevance of third parties to national politics, we study, qual-
itatively and numerically, the dynamics of the emergence and spread of third parties
on a local level where growth is measured in terms of the number of third party
voters and members. We restrict our study to a local level because third parties
usually originate in a small group and, via a “bottom-up” method of diffusion,
spread within a population by acquiring local official positions and then expanding
to higher levels of government [14]. Although individual personalities and circum-
stances dominate the initial formation of any group, the ability of even a small group
of people to make itself heard within a larger community is great enough, especially
in an age of information technology, that we consider the local level large enough
to be described by a collective average. That is, the voting population under study
is large enough that stochastic (random) effects are dominated by the deterministic
average behavior of the group.

We use an epidemiological paradigm [2] to translate third party emergence from
a political phenomenon to a mathematical one where we assume that third parties
grow in a similar manner as epidemics in a population. We take this approach
following in the steps of previous theoretical studies that model social issues via
such methods [1, 6, 7, 11, 33]. The epidemiological metaphor is suggested by the
assumption that individuals’ decisions are influenced by the collective peer pressure
generated by others’ behavior; the “contacts” between these two groups’ ideas are
analogous to the contact processes that drive the spread of infectious diseases. Here
we assume that a certain subpopulation of the voting individuals, defined according
to certain demographic factors, is more receptive (in epidemiological terms, sus-
ceptible) to third party ideology than the rest of the voting population, and that
their political behavior is therefore driven by such collective peer-pressure contacts
[34, 36, 38].

There are many components that may affect the decision of a person when it
comes to voting. During a political campaign all candidates spend a great amount
of effort to assure that as many people as possible get exposed to their ideas, and
most importantly, their name. People are often so overwhelmed by exposure to
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different candidates that they end up depending more on informal ways of obtain-
ing information such as talking to other people. This makes networking among
people very influential during election time; in fact some studies show that voting
is “contagious.” [23] It has been shown that people often rely on friends, relatives,
coworkers, etc. to obtain information about the candidates [31]. Also, there is
evidence that people who support a particular candidate tend to encourage others
to vote for that candidate [13]. This makes the interaction between people a very
important factor in the voting process because both the person wanting information
seeks it from other people and the ones with particular preferences want to share
them.

Collective behaviors such as voting have been studied for decades, notably in
the seminal work of Granovetter [12], who considered individuals in a population
to have a distribution of thresholds with regard to their willingness to participate
in a particular collective behavior (he used rioting as a primary example). Other
subsequent studies considered the role played by a core group of especially influential
individuals [15, 24], such as party activists recruiting voters. These studies used
probabilistic and stochastic models which yielded primarily numerical results; in
applying the epidemiological framework described above, we focus on the collective
(rather than individual) thresholds for persistence of a behavior (here voting and
party membership) which our deterministic models allow us to calculate.

While our model is designed to pertain to all third parties, we consider the
Green Party as a case study. Although formally united under the Association of
State Green Parties in 1996 (and later the nationalized Green Party of the United
States in 2001), state-based green parties have thrived in the U.S. at the local level
since 1984, when the Green Committees of Correspondence (CoC) were formed with
the purpose of organizing local Green groups and working toward the founding of
a national Green political party [18]. Our particular study focuses on the growth
(and in some cases decline) of the Green Party in six states and the District of
Columbia in the past decade, using voting and registration data. In comparing the
predictions of our model to particular data, we consider a short time frame so that
we can assume that social structure within the state in question does not change
drastically, a necessary condition for assuming voting population heterogeneity.

We organize our paper as follows: Section 2 describes our theoretical model,
as well as a simplification in which the entire population under study is equally
receptive to third party ideas. Section 3 presents the mathematical analysis of
the simplified model (which employs qualitative analysis techniques from the field
of nonlinear dynamical systems, as well as sensitivity analysis) and interprets the
results, and Section 4 applies them to a case study, using data to estimate model
parameters. Section 5 performs a similar but more limited analysis of the more
complex model, and Section 6 draws conclusions about the implications of our
models for the growth of third parties from grassroots movements.

2. A Population Model for the Spread of a Third Party.

2.1. Underlying Assumptions. In developing our model, we apply epidemiolog-
ical terminology to describe the growth of a third party. The assumptions we make
about how individuals behave, and change their behavior, define the classes in our
compartmental model and the rates at which individuals move between classes.

(1) We assume that our population is a heterogeneous mix of individuals who
belong to different backgrounds according to certain demographic factors.
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Our model considers a population of all voters, N , divided into two classes or sub-
populations whose susceptibility to third party ideology is based on demographic
factors such as education, socioeconomic status, race, gender, age, political orienta-
tion and professional occupation. Inherently, certain demographic characteristics,
labelled as high affinity, make an individual more likely to subscribe to a third
party’s ideology, which targets a more specific audience than alternative majority
agendas. That is, upon entering the voting system, certain individuals are more
statistically inclined to vote a certain way. For example, a progressive environmen-
tal activist is statistically more likely to agree and vote for the Green Party agenda,
which stresses communal-based economics, local government, and gender and racial
equity, than a conservative corporate executive whose economic philosophy directly
conflicts with that of the Green Party. For this reason we consider population
heterogeneity vital to this study.

We apply the following method of dividing the entering voting population into
two susceptible classes: if an individual has more high affinity factors than low affin-
ity factors then that person directly enters the high affinity class and similarly for
low affinity susceptibles. We define high affinity factors as features of the individual
based on his/her demographic profile that make him/her more inclined to vote for
the third party; conversely, low affinity factors make the individual less statistically
likely to subscribe to the party’s platform. We assume that a constant proportion
p (0 < p < 1) of new voters enters the high-affinity class H (the remaining 1 − p
proportion enter L).

(2) We assume that individuals’ affinity factors (demographic characteristics) re-
main fixed for the period of the study.

(3) We assume that a third party’s agenda remains consistent over time.

We assume that individuals do not move from one susceptibility class to the
other. One reason for this is the relative permanence of individuals’ demographic
characteristics. We limit our model to tracing the expansion of the third party;
hence, we refer to a shorter time period over which we assume social structure
remains constant. In other words, individuals with high affinity to the third party
do not become individuals with low affinity, and vice versa.

The other reason for this consistency has to do with the parties themselves. In
addition to being more specific than major party agendas (i.e., more specific in their
goals and less geared to moderacy), third party platforms tend to be more consistent
over time. Third parties are not pressured to constantly adjust to the shifting
demands of the populace since they do not seek the majority vote. Consequently,
they do not target the majority voting population. Each party has its own agenda,
which appeals to certain sectors of the voting population. Hence different parties
target voting populations that are more inclined to subscribe to their ideology.
While one party, for example, may target individuals from a certain educational
background that we, in our model, label as high affinity and that other parties may
overlook, all parties nonetheless recognize that education factors into an individual’s
likelihood to support or refute that party’s platform. It is true that individuals from
varied backgrounds comprise the main parties, yet, when dealing with the specific
agendas of third parties that do not strive to sway the majority vote, we assume that
third parties appeal to individuals of certain demographic backgrounds more than
others. Therefore, we account for the aforementioned standard set of demographic
factors that parties look at when spreading their ideologies. In our paper we apply
our model to an individual case study of the Green Party of Pennsylvania; however,



THE SPREAD OF POLITICAL THIRD PARTIES 5

the same methodology of distinguishing susceptibles can be applied to all third
parties.

(4) We define two levels of participation in third-party politics: voting for third-
party candidates, and membership. A party exists only if it has members;
we define members as those who pay dues, volunteer, and preside over party
affairs.

As described above, all voters enter the voting system either to the low affinity, L,
or high affinity, H , susceptible class. According to our epidemiological metaphor, in
addition to these two susceptible classes, our model includes three infected classes:
VH , VL, and M , third party voters from the high affinity class, third party voters
from the low affinity class, and party members respectively. We define party mem-
bers as voters of the third party who pay dues to the party; often such members
officiate, volunteer and actively campaign for voter recruitment. In epidemiological
terms, VH and VL correspond to voters of a lower degree of infection and individuals
of the M class are voters infected to a higher degree. We distinguish between VH

and VL because of their interactions with their respective “neighbors” in H and L.

(5) We assume that third parties, emerging through resource-limited grassroots
efforts, spread primarily via primary (direct) contacts between third-party
supporters and susceptibles.

(6) We assume that third party members have a greater effect upon voter recruit-
ment than do third party voters, due to members’ activism.

In our model, a system of nonlinear differential equations, we consider suscepti-
ble movement into voting and member compartments as well as possible regressions
back from the third party voting phase into the susceptible class. Once an indi-
vidual is susceptible he/she can become ‘infected’ (either VH or VL) through direct
contact with the VH , VL, and M classes. Due to a lack of funding and resulting
lack of mass-media exposure to the general population, these primary contacts with
susceptibles involve such direct interaction as personal meetings, phone conversa-
tions, and electronic communications like personally addressed e-mails and weblog
(blog) comments. We assume that the rate at which these contacts occur is propor-
tional both to the size of the susceptible group and to the proportion of third-party
supporters in the population.

We do not consider a linear term weighing the influence of media coverage from
the third party (i.e., secondary contact factors) in the forward transition from both
susceptible classes to third party voting classes. Instead, we focus on the nonlinear
terms considering the effects of voters from the VH , VL, and M classes, where voters
from VH and VL bear an affinity-specific influence βH (from H to VH) and βL

(from L to VL) in third party voter recruitment. Through activism, members from
M influence susceptibles of each type at higher rates (αβH and αβL, respectively)
than voters, with their increased influence measured by the parameter α (α > 1).

(7) We consider both primary (direct) contacts and secondary (indirect) contacts
in the regression of third party voters to the susceptible class.

(8) We assume that all other parties exert equal influence in discouraging third
party voting.

(9) We assume that individuals have more influence upon others of their same
affinity class (high or low) than upon members of the other affinity class, in
encouraging and discouraging third party voting.
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We consider the transitions back from the third party voting to the suscepti-
ble classes to involve both linear terms, εHVH and εLVL, and nonlinear terms,
φH(H + σL)VH

N
and φL(L+ σH)VL

N
, contributions by secondary contacts with the

opposition (i.e., media from well-funded majority voters) and direct contact with
the susceptible classes respectively. Compared to primary contacts, described in a
previous paragraph, secondary contacts include mass e-mails, media, and circulating
literature.

Voters from a certain susceptibility class (with its own set of demographic fac-
tors) address issues that usually appeal more to voters deriving from the same
class. Therefore, susceptible individuals with high affinity bear a greater influence
in recruiting voters who came from the high affinity susceptible class back into the
susceptible class than susceptible individuals with low affinity. The reduction in
influence by individuals from a different affinity class is denoted by σ, so that in
regressing back from VH to H , σL represents the lesser influence that L individu-
als exert on voters from VH than do susceptibles from H , the higher affinity class
(similar reasoning applies to the VL-to-L transition). Likewise, the cross-affinity
influence in recruiting third party voters is reduced by a factor of σ.

(10) We assume that third party voters become active party members through
the ongoing efforts (primary contacts) of the members, who have made a
permanent commitment to the party.

Once voting for the third party, individuals can become party members. They
enter this higher state of infection via the nonlinear terms γVH

M
N

and γVL
M
N
,

where we only consider the influence of primary contacts with party members in
bringing about this transition, measured by the rate parameter γ. Given that we
are studying the spread of the party, we assume that party members do not resign
their memberships. We reason that once an individual feels strongly enough to join
a party, he/she retains his/her loyalty to the party; the only way a person stops
being a member (during the growth period under study) is by leaving the voting
system.

Finally, we consider natural exits from all classes (at a rate µ) as a result of death
or moving. The sum of the equations of the model, for both versions developed
below, gives dN

dt
= 0, reflecting an assumption that the total voting population size

remains constant, i.e., the number of people entering the voting system (coming of
age, or moving in) counterbalances the number of people leaving the system (dying,
or moving out), which is a reasonable approximation for periods of a few years.

2.2. The General (Two-Track) Model. We first introduce a two-track model,
as described immediately above, to study the dynamics between a heterogeneously
mixed population of susceptible voters, third party voters, and party members. We
apply the following set of ordinary differential equations to model voting dynamics,
as illustrated in Figure 1.

dH

dt
= pµN + εHVH + φH(H + σL)

VH

N
− βH(VH + σVL + αM)

H

N
− µH, (1)

dL

dt
= (1− p)µN + εLVL + φL(L+ σH)

VL

N
− βL(σVH + VL + αM)

L

N
− µL, (2)
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Figure 1. The two-track model, with per capita flow rates

Table of Compartments and Parameters
H high affinity susceptibles (i.e., voters highly susc. to third party ideology)
L low affinity susceptibles (i.e., voters barely susc. to third party ideology)
VH third party voting individuals deriving from H
VL third party voter individuals deriving from L
M third party members (i.e., party officials, donors, volunteers)
p proportion of the voting population N entering H
βH peer-driven recruitment rate of H into VH by individuals in VH , VL and M
εH linear recruitment rate of VH back into H via secondary contacts

(i.e., media and campaigning from opposing parties)
φH recruitment rate of VH into H by direct contact with individuals

in the opposition classes (i.e., individuals in H and L)
βL peer driven recruitment rate of L into VL by individuals in VL, VH and M
εL linear recruitment rate of VL back into L via secondary contacts

(i.e., media and campaigning from opposing parties)
φL recruitment rate of VL into L by direct contact with individuals

in the opposition classes (i.e., individuals in H and L)
α factor by which the influence of party members M in recruiting voters

in H and L into VH and VL exceeds that of voters in VH and VL

σ factor by which the influence of individuals upon members of a different
affinity class is reduced in encouraging or discouraging third party voting

γ recruitment rate of VH and VL into M by individuals in M
µ rate at which individuals enter or leave the voting system

Table 1. Compartments and parameters of the two-track model

dVH

dt
= βH(VH+ σVL+ αM)

H

N
− εHVH − φH(H + σL)

VH

N
− γMVH

N
− µVH , (3)

dVL

dt
= βL(σVH + VL + αM)

L

N
− εLVL − φL(L+ σH)

VL

N
− γMVL

N
− µVL, (4)

dM

dt
=

γMVH

N
+

γMVL

N
− µM, (5)

N = H + L+ VH + VL +M. (6)



8 ROMERO, KRIBS-ZALETA, MUBAYI AND ORBE

Adding equations (1), (2), (3), (4) and (5) yields dN
dt

= 0, showing that the total
population N is constant over time. Model parameters are summarized in Table 1.

2.3. The Simplified (One-Track) Model. In order to facilitate analysis of the
two-trackmodel, we initially consider a simplified version that does away with voting
population heterogeneity (assumption (1), and consequently (9)) before exploring
analysis for the more complex system. This simplified model assumes a homoge-
neous susceptible population (p = 0 or p = 1), reducing the two-track model to
one susceptible class, S, and two infected classes: third party voters, V , and party
members, M , respectively. The S class comprises those individuals who vote, but
do not vote for the third party. The V class comprises the third party voters, and
the M class again has third party members (i.e., party officials, donors, volunteers).

In the one-track model we omit unnecessary parameters from the heterogeneous
version. Figure 2 illustrates the one-track model, and Table 2 summarizes the
parameters.

-
µN

S

?
µ

-

β(V + αM)/N

�
ε+ φS/N V

?
µ

-
γM/N

M

?
µ

Figure 2. The one-track model, with per capita flow rates

β peer driven recruitment rate of S into V by third party voters and members
ε recruitment rate of V back into S via secondary contacts

(i.e., media and campaigning from opposing parties)
φ recruitment rate of V into S by direct contact with susceptibles
α factor by which the recruitment rate of S into V by third party

members exceeds the recruitment rate by individuals in V
γ recruitment rate of V into M by third party members
µ rate at which individuals enter or leave the voting system

Table 2. Parameters of the one-track model

In this case the model reduces to the following system, which is effectively two-
dimensional since N can again be seen to be constant:

dS

dt
= µN + εV + φS

V

N
− β(V + αM)

S

N
− µS, (7)

dV

dt
= β(V + αM)

S

N
− εV − φS

V

N
− γMV

N
− µV, (8)

dM

dt
=

γMV

N
− µM, (9)

N = S + V +M. (10)



THE SPREAD OF POLITICAL THIRD PARTIES 9

3. Analysis of the One-Track Model. We begin our analysis by calculating
equilibria for our model and determining conditions for their existence and stability.
We first simplify the system in two ways. Since the total voting population N
is assumed constant, we can reduce our system to two dimensions by rewriting
S = N − V −M in equation (8), so that

dV

dt
= β(V + αM)

N − V −M

N
− εV − φ(N − V −M)

V

N
− γMV

N
− µV. (11)

We can now analyze the system defined by (11) and (9), as S can always be found
once V and M are known.

The constancy of N also allows us to proportionalize the system by defining new
variables v = V

N
, m = M

N
, and s = S

N
= 1− v−m, which give the proportion of the

population in each class. Dividing equations (11) and (9) by N and substituting
the new variables gives, finally, the system

dv

dt
= β(v + αm)(1 − v −m)− εv − φ(1− v −m)v − γmv − µv, (12)

dm

dt
= (γv − µ)m. (13)

In order to analyze stability we linearize the system and compute partial first deriva-
tives with respect to each of the variables, v and m, obtaining the Jacobian matrix
J1 for system (12)–(13):

J1 =









(β − φ)(1 − 2v −m)

−(αβ + γ)m− (µ+ ε)
αβ(1 − v − 2m)− (β − φ+ γ)v

γm γv − µ









.

3.1. E1: Party-Free Equilibrium (PFE). The party-free equilibrium (PFE) for
the reduced system occurs at (0,0), the steady state achieved when the entire pop-
ulation resides in the S class (i.e., the third party has neither voters nor members
and, by definition of party existence, does not exist). The PFE is essentially analo-
gous to the disease-free equilibrium in epidemiology and always exists as a possible
outcome for the voting population.

Applying the above reduced Jacobian matrix to our PFE, (0,0), where we only
consider the v and m terms, we determine PFE stability:

J1(0, 0) =





(β − φ)− (µ+ ε) αβ

0 −µ



 .

The equilibrium point (0,0) will be locally asymptotically stable (LAS) if all the
eigenvalues of the matrix are negative. Assuming µ > 0, the eigenvalue −µ of the
Jacobian is always negative, whereas the second eigenvalue (β − φ) − (µ + ε) < 0

if and only if (β−φ)
µ+ε

< 1. For ease of notation and interpretation we define the

threshold quantity R1 = (β−φ)
µ+ε

, so that the PFE is LAS if and only if R1 < 1. We

discuss the relevance of this threshold value in the last part of this section.

3.2. E2: Member-Free Equilibrium (MFE). The member-free equilibrium
(MFE) occurs when M = 0 but V, S 6= 0, i.e., the voting population subdivides
between susceptibles, S, and third party voters, V . While mathematically possi-
ble, this outcome is politically unrealistic given that voters cannot vote for a party
that does not exist (recall our assumption (4) that party existence depends on the
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presence of an M class). For mathematical consistency, however, we consider the
equilibrium point (v∗2 ,m

∗
2), where m∗

2 = 0. (Note that the asterisk superscript de-
notes equilibrium values, while the numerical subscript distinguishes the equilibrium
point in question.) This arises from the equilibrium condition obtained by setting
dm/dt = 0 in (13):

(γv∗ − µ)m∗ = 0, (14)

which implies that either (γv∗ − µ) = 0 (which we will consider later) or m∗ = 0.
To find v∗2 we set dv/dt = 0 and m∗ = 0 in (12) and rearrange terms to get

(β − φ)v∗2 + (µ+ ε+ φ− β)v∗ = 0.

This implies that either v∗ = 0 (the party-free equilibrium) or (β−φ)v∗ = β− (µ+
ε+φ). We consider the situation where v∗ 6= 0, solve for v∗ and simplify the results
as follows:

v∗2 = 1− µ+ ε

β − φ
= 1− 1

R1

where v∗2 retains political value only if R1 > 1—otherwise v∗2 < 0 which is mean-
ingless.

Finally, we can also write s∗2 = 1 − v∗2 − m∗
2 = µ+ε

β−φ
= 1

R1

, which makes sense

politically only if R1 > 1 (i.e, s∗2 < 1). We can therefore express our member-free
equilibrium as E2 = (1 − 1

R1

, 0). The MFE exists if and only if R1 > 1, since
ignoring this condition leads to a negative third party voting population.

The above situation makes mathematical sense but not political sense since par-
ties, by our original assumption, do not exist without members, and in this member-
free case we deal with voters who vote for a non-existent party. We might interpret
this situation as having voters still willing to vote for this party, but no party
candidates for whom to vote.

Regardless of the political likelihood of MFE existence, we consider its stability.
Again, we apply the method of using the reduced system’s Jacobian matrix in
determining the stability of the member-free equilibrium:

J1(1 − 1
R1

, 0) =





(µ+ ε)(1−R1) αβ( 1
R1

)− (β − φ+ γ)(1− 1
R1

)

0 γ(1− 1
R1

)− µ



 .

The reduced system equilibrium point (1− 1
R1

, 0) is locally asymptotically stable if
all the eigenvalues of the above matrix are negative. We know that, since R1 > 1
(in order for the MFE to exist), one of the eigenvalues, (µ+ ε)(1−R1), is negative.
The second eigenvalue of the Jacobian is γ(1− 1

R1

)−µ. This eigenvalue is negative

if and only if γ
µ
(1− 1

R1

) < 1.

We define the left hand side of the inequality as R2 = γ
µ
(1 − µ+ε

β−φ
) = γ

µ
(1 −

1
R1

). Hence we have derived two threshold parameters R1 and R2 that determine

equilibria stability depending on relative parameter values. (Note that they are
related: R1 = 1 ⇔ R2 = 0.)

3.3. E3 and E4: Survival Equilibria. In the event of survival equilibria, the
voting population subdivides between susceptibles, S, third party voters, V , and
members, M . We regard this as a successful state of coexistence and, given certain
conditions, the point at which the party thrives. We determine the equilibrium
proportions by returning to the condition (14) that dm/dt = 0. Since dm

dt
= (γv∗ −
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µ)m∗, v∗ = µ
γ
when m∗ 6= 0. Here we impose the condition µ < γ so that v∗ < 1,

since s∗ + v∗ +m∗ = 1.
Next we set dv/dt = 0 and v∗ = µ

γ
in (12):

dv

dt
= (β − φ)

µ

γ

(

1− µ

γ
−m∗

)

+ αβm∗

(

1− µ

γ
−m∗

)

− (µ+ ε+ γm∗)
µ

γ
= 0.

This equation, which is quadratic in m∗, can be rewritten (after dividing through
by −αβ) in the form f(m∗) = m∗2 +BM∗ + C = 0, where

B =

(

β − φ

αβ

)

µ

γ
−
(

1− µ

γ

)

+
µ

αβ
, C = −µ

γ

[

β − φ

αβ

(

1− µ

γ

)

− µ+ ε

αβ

]

. (15)

Solutions to f(m∗) = 0 are given by the quadratic formula

m∗

± =
1

2

[

−B ±
√

B2 − 4C
]

;

however, in general, these solutions may be real, or may fall outside the meaningful
interval (0, 1−v∗]. Depending on the values of model parameters, there may be 0, 1,
or 2 solutions within this interval, each corresponding to a meaningful equilibrium
with positive party membership.

Analysis of the conditions involved in determining the number of survival equi-
libria is considerably more involved than that for E1 and E2; details are given in
the Appendix. The results, which introduce an additional threshold quantity, can
be summarized as follows.

Proposition 1. (i) If R2 > 1, the system (12)–(13) has precisely one survival
equilibrium E3 = ( γ

µ
,m∗

+).

(ii) If R2 < 1, then the system has two survival equilibria, E3 and E4 = ( γ
µ
,m∗

−),

if and only if R3 > 1, where

R3 = min (R3a, R3b) , R3a = r3

(

1− 1 + q

r2

)

, R3b =
√
r3

(

1−
√

1− q

r2
+ h

)

,

(16)
and

q =
β − φ

αβ
, r2 = γ/µ, r3 = αβ/µ, h =

2√
r3

(√

1 +
ε

γ
− 1

)

.

Otherwise there are none.

To interpret the conditions R3a > 1 and R3b > 1, we can rewrite them as follows:

B < 0 ⇔ R3a > 1 ⇔ 1

αβ
+

1 + q

γ
<

1

µ
, (17)

B2 − 4C ≥ 0 ⇔ R3b > 1 ⇔
√

1

αβ
+

√

1− q

γ
+ ĥ(ε/γ) ≤

√

1

µ
, (18)

where

ĥ(ε/γ) = 2

√

1

αβ

√

1

µ

(√

1 +
ε

γ
− 1

)

> 0.

Both inequalities (17) and (18) relate the minimum amounts of time taken for
an individual to be influenced by a party member (M) to move from S to V , 1/αβ,
and from V to M , 1/γ, to the average lifetime of an individual in the voting system,
1/µ. In order for the party to survive, a weighted sum of the first two times must be
less than the average lifetime in the system, or else individuals in S will, on average,
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leave the system before they can “replace” the members in M who recruited them.
The weights in the sum involve q = β−φ

αβ
, the relative effectiveness of voters V to

members M in recruiting new voters from S, because the influence of party voters
reduces the recruiting threshold burden on party members M to some extent.1

(Note that 0 < q < 1.)
Observe that (18) implies that

√

1

αβ
+

√

1− q

γ
≤

√

1

µ
. (19)

If ε << γ, we can generate a Maclaurin (Taylor) expansion in ε/γ for (18) which
yields

√

1

αβ
+

√

1− q

γ
+

1

2

√

1
αβ

√

1
µ

√

1−q
γ

(

ε

γ

)

+O
[

(

ε

γ

)2
]

≤
√

1

µ
.

This expansion suggests more quantitatively how the influence ε of voters for other
parties S in getting third-party voters V to “defect” back to the major parties
complicates the third party’s survival (which would otherwise only require (19)).

Having established conditions for the existence of the two survival equilibria, E3

and E4, we examine their stability. The reduced Jacobian matrix for the survival
equilibria follows:

J1(
µ
γ
,m∗

±) =













[

(β − φ)
(

1− 2µ
γ
−m∗

±

) [

αβ
(

1− µ
γ
− 2m∗

±

)

−(αβ + γ)m∗
± − (µ+ ε)

]

−(β − φ)µ
γ
− µ

]

γm∗
± 0













.

The stability (LAS) criterion that the eigenvalues of this matrix have negative real
part is equivalent to the conditions that the trace be negative and the determinant
positive. We calculate

detJ1(
µ
γ
,m∗

±) = −γm∗

±

[

αβ

(

1− µ

γ
− 2m∗

±

)

− (β − φ)
µ

γ
− µ

]

,

so that

detJ1(
µ
γ
,m∗

±) > 0 ⇔
[

αβ

(

1− µ

γ
− 2m∗

±

)

− (β − φ)
µ

γ
− µ

]

< 0

⇔ m∗

± >
1

2

[(

1− µ

γ

)

−
(

β − φ

αβ

)

µ

γ
− µ

αβ

]

= −B

2
.

Since m∗
− < −B

2 < m∗
+, we see that E4 is never stable, while the stability condition

for E3 reduces to tr J1(
µ
γ
,m∗

+) < 0. Thus we calculate

trJ1(
µ
γ
,m∗

+) = (β − φ)

(

1− 2
µ

γ

)

− (µ+ ε)− (β − φ+ αβ + γ)m∗

+,

so that

tr J1(
µ
γ
,m∗

+) < 0 ⇔ m∗

+ >
(β − φ)

(

1− 2µ
γ

)

− (µ+ ε)

(β − φ+ αβ + γ)
=

(β − φ) µ
γ
(R2 − 2)

(β − φ) + αβ + γ
. (20)

1 If we define T1 = 1/αβ, T2 = 1/γ, and T3 = 1/µ, (17) and (18) can be written more simply

as T1 + (1 + q)T2 < T3,
√
T1 +

√

(1 − q)T2 + h ≤
√
T3.
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Equilibrium Existence Cond. Stability Cond.

Party-Free E1 = (1, 0, 0) always exists R1 < 1

Member-Free E2 = ( 1
R1

, 1− 1
R1

, 0) R1 > 1 R2 < 1

Survival E3 = (1− µ
γ
−m∗

+,
µ
γ
,m∗

+) (i) R2 > 1, or always stable

(ii) R2 < 1, R3 > 1 when it exists

Survival E4 = (1− µ
γ
−m∗

−,
µ
γ
,m∗

−) R2 < 1, R3 > 1 always unstable

Table 3. Equilibria of one-track model

This is true for all m∗ when R2 < 2. The case when R2 ≥ 2 requires further algebra
and is relegated to the Appendix. The result is that E3 is always stable (LAS) when
it exists, while E4 is always unstable.

3.4. Global Behavior. Table 3 summarizes the conditions for existence and local
stability of the four equilibria of the one-track model. Because system (7)–(9) can be
reduced to a set of two differential equations (12)–(13), we can apply the Poincaré-
Bendixson Theorem to establish global stability. Since the system is well-posed,
with the invariant set D = {(v,m) : v,m > 0; v+m ≤ 1}, there are no unbounded
solutions beginning in the state space, and a straightforward application of Dulac’s
Criterion with the function b = 1/vm confirms that there are no limit cycles, either:

∂

∂v

(

b
dv

dt

)

+
∂

∂m

(

b
dm

dt

)

< 0 in D.

Therefore, all solutions to the system which begin within the state space must ap-
proach an equilibrium. In particular, when only one locally stable (LAS) equilibrium
exists, that equilibrium must in fact be globally stable (GAS).

The conditions in Table 3 can be graphed to show the different possible global
behaviors of the one-track model. Each condition corresponds to a curve dividing
parameter space into multiple regions, each of which represents a different global
behavior (see Appendix A.1 for the derivations). The five resulting regions are
illustrated in Figure 3 and summarized in Table 4.

E1 E2 E3 E4

I stable unstable does not exist does not exist
II unstable stable does not exist does not exist
III unstable unstable stable does not exist
IV unstable stable stable unstable
V stable does not exist stable unstable

Table 4. Regions of Equilibrium Stability

I In region I, E1 is the only stable equilibrium; the party will always go extinct.
II In region II where R1 > 1, R2 < 1, and R3 < 1, E2, the member-free state, is

the only stable equilibrium.
III In region III where both R1 > 1 and R2 > 1, E3 is the only stable equilibrium;

the party will inevitably approach a survival state.
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Figure 3. Regions of equilibrium stability, with q, x, y as in Appendix A

IV In region IV where R1 > 1, R2 < 1 and R3 > 1, E2 and E3 coexist as
stable equilibria although, if placed in a political context, E2 is not a realistic
outcome for the party.

V In region V where R1 < 1, R2 < 1, and R3 > 1, E1 and E3 are both stable;
depending on the initial conditions the solution tends to one state or the other.

The coexistence of two locally stable equilibria (one representing party survival
and the other party extinction) in regions IV and V involves a phenomenon known in
epidemic modeling as a backward bifurcation, in which the exchange of stability at
a threshold value (here, R2 = 1) reverses direction, creating a situation in which the
unstable equilibrium E4 serves to split the state space into two basins of attraction
for the two stable equilibria. In these regions, the equilibrium approached depends
upon initial conditions: in particular, a large enough core of dedicated members M
can sustain the party (toward E3). What is unusual here is that the “backward”
part of the bifurcation curve can extend back beyond not only the bifurcation at
R2 = 1 but also the bifurcation at R1 = 1 (where R2 = 0), as illustrated in Figure 4.
Whenever R1 < 1, R2 < 0, a condition that would normally lead to the death of
the party given local asymptotic stability of the PFE, there are still conditions
(R3 > 1) under which two survival equilibria exist, one of which is stable (E3). In
other words, the party can thrive in conditions under which it would normally die
out, given that we have the necessary parameters and sufficient initial number of
M individuals.

The ideal conditions for the party, of course, are when R2 > 1 (region III), in
which the party survives regardless of initial conditions. (Note R2 > 1 implies
R1 > 1.) The last part of this section interprets all these mathematical thresholds
in political terms.

3.5. Threshold Parameters R1, R2, and R3. Our system contains three local
thresholds or tipping points where population outcomes, measured as S, V , and
M , depend on parameter values. By tipping point we refer to the sociological term
that describes the point at which a stable phenomenon turns into a crisis, which,
in a political context, corresponds to the extreme states of the party: death and
growth [10]. In the context of our model, for example, the party cannot sustain
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Figure 4. Diagram illustrating a backward bifurcation that ex-
tends below R2 = 0 (R1 = 1), using parameter values φ = 0.15,
µ = 0.05, ε = 0.25, γ = 0.20 (all rates in yr−1), α = 1.25

grassroots growth until parameter conditions reach R1 = 1, after which point the
third party voting and member classes gain individuals. These threshold quantities
correspond to similar terms in demographic and epidemic models called reproduc-
tive numbers which measure the average number of offspring or infections caused
by a single group member during its lifetime. In our political context it is more
appropriate to interpret these reproductive numbers in collective terms as regards
the influence of party voters on the susceptible population. We distinguish between
the aforementioned thresholds, R1, R2, and R3, by analyzing them qualitatively in
a political context.

R1 denotes the average number of susceptibles influenced to vote for the party by
a single party voter in V , if dropped into a homogeneous population of susceptibles.
The expression R1 = β−φ

µ+ε
gives the net peer pressure, β − φ, on susceptibles S

by voters V , multiplied by the average time, 1
µ+ε

, spent in the voting class V . As

mentioned above, it is most appropriate to interpret R1 as an average number per
voter taking into account the collective influence of all the party voters. Note that
we are assuming that the influence of party voters on susceptibles β is stronger
than the reverse influence φ of susceptibles to discourage party voters, a necessary
condition for party emergence, which guarantees that R1 > 0.

R2 measures instead the second stage of recruitment: how effective party mem-
bers M are in recruiting third party voters to become members once there are
enough individuals in V . The expression R2 = γ

µ
(1 − 1

R1

) gives the product of the

rate at which party activists M recruit voters from V into M , γ, the average polit-
ical lifetime of a party member, 1

µ
, and the proportion of the population N in V at

the MFE, (1− 1
R1

) (since only voters V can be recruited directly into M). Similar to
R1, R2 measures the average number of V to M conversions per individual in the M
class. If party voters are ineffective at influencing susceptibles to vote for the party
and R1 < 1, then the value of R2 will be negative; rather than interpreting this as a
negative ability of party members to recruit voters into activism, however, it should
be seen as an indication that the pool of party voters available for recruitment into
party membership is not there, preventing normal party growth.

R3 measures the extent to which party members M actively recruit susceptible
individuals S into the voting class V . This activism, which sidesteps the traditional
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hierarchical structure of a party, is a key characteristic of growing grassroots move-
ments, which often lack a political environment favorable to their growth in the
traditional way outlined above (R2 < 1). Because of the two conditions required
mathematically for party survival when R2 < 1, R3 is defined as the greater of two
quantities, both of which involve party members’ abilities to recruit voters, r2, and
members, r3, over their political lifetimes, as well as the relative efficacy of voter
peer-pressure influence to members’ influence through activism on the susceptible,
q. The general form r3(1 − 1/r2) present in both components of R3 parallels the
form of R2 = r2(1 − 1/R1), with members’ potential r2 for converting third-party
voters into members reducing the constraint on their ability r3 to produce those
voters in the first place. Note that r2 must be great enough in order for R3 even to
be positive: that is, only if the members can recruit other members well can their
recruitment of voters sustain the party.

We now list possible outcomes involving these thresholds and their implications:

1. When R1 < 1 (regions I and V in Figure 3 and Table 4) the net influence of
party voters V upon susceptibles is weak enough that grassroots emergence
of the party is not possible. The hierarchical structure of party involvement
precludes normal growth of party membershipM when party voters are unable
to replenish their own ranks (R1 < 1 implies R2 < 0). However, exceptionally,
if the recruiting ability of party members M is great enough (R3 > 1, region
V), a sufficiently large dedicated core can sustain the party through its own
efforts, despite the relative inefficiency or lack of influence of those merely
voting for the party. This outcome illustrates the key role activists play in
party survival during periods of adversity.

2. When R1 > 1 each individual in V is converting, on average, more than one
person in S into V , thus allowing the voting class V to thrive. If, in addition,
R2 < 1 (regions II and IV), we have a situation in which party activists are
then unable to recruit from the voting class effectively enough to maintain
the party core M (perhaps because the voting class is too small). Normally
this would lead to an outcome in which a group disposed to vote for the party
remains (in V ) but the party core itself dwindles away, leading effectively to
party extinction (with the ideologically closest main political party perhaps
adjusting a platform to capture these votes). However, as with the case when
R1 < 1, a sufficiently large initial core can ensure the party’s survival when
the core is effective at influencing individuals to begin voting for the party
(R3 > 1, region IV).

3. The condition R2 > 1 explains the case where the party (V and M classes)
grows normally, by recruiting members from the S and V populations, respec-
tively. Here the party voters are influential enough in garnering new voters
from S (R1 > 1) that the party’s survival does not depend on party activists’
ability to recruit new voters directly (i.e., R3 does not come into play). In epi-
demiological terms, this corresponds to a successful invasion: conditions are
so favorable for the development of the party that it will become established
even with a small initial group of members.

In general, the survival of the party is determined by the interplay among the
three recruitment processes involved in the model: from S to V by members of
V , as measured by R1; from V to M by members of M , as measured by r2 (R2

incorporates both of these first two processes); and from S to V by members of
M , as measured by r3 (R3 incorporates all three processes). Party survival requires
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either that the first two processes be effective enough (R1 > 1 and R2 > 1) for a
small grassroots effort to take hold, or else that an initial membership core be large
enough, and the second and third processes effective enough (R3 > 1), that direct
recruitment by party activists can sustain its membership.

4. A Case Study: The Green Party.

4.1. Methods. As an application of the simplified one-track model analyzed in
Section 3, we used Green Party registration and voting records for six states (CA,
ME, MD, NY, OR, PA) and the District of Columbia (DC) to study the growth of
the Green Party during the past decade or so.

We began by establishing basic demographic information for the target (study)
population. A report from the Pew Research Center [29] provided annual statistics
on percentages of Americans identifying themselves as confirmed Democrats or Re-
publicans, leaning Democrat or Republican, or confirmed or leaning toward third
parties, for the period 1987–2007. We took an average of these percentages during
the period 2000–2007, during which time approximately 25% of the voting popula-
tion identified itself as leaning Democrat or Republican, and an additional about
11% as confirmed or leaning toward third parties (including the Green Party). We
estimate our target population—those capable of being influenced to vote Green—
as all of the former group, and about half of the latter group (since the latter group
also includes confirmed Greens). Thus we estimate that the target population con-
sists of about 25%+6%=31% of the total voting population of each state. For
each state, we averaged the voting population size over the time period of interest
(which varied slightly from state to state, as detailed below) from voting records.
We then normalized the voting and registration records as proportions of the target
population in each case.

To determine the replacement (or mortality) rate µ, we used the average 2003 life
expectancy at birth in the U.S. of 77.5 years given in [32], and the minimum voting
age of 18 years, to derive an average voting lifetime of 59.5 years, for an estimate of
µ = 1/59.5 yr ≈ 4.58× 10−5/day. (A United Nations report gives an average U.S.
life expectancy at birth of 78.3 years for the period 2000–2005 [30], which yields a
comparable estimate of µ = 4.77× 10−5/day.)

The data used for this case study came from official voter registration records
[4, 9, 17, 20, 21, 25, 27] and election results [3, 8, 16, 19, 22, 26, 28] from each state.
Voter registration records showing Green Party registration totals, given in some
states as often as monthly, were fit to the size of the member class M over time.
Since the dates for which Green Party registration data were given varied from
state to state, the initial and final times did as well, but covered approximately the
decade 1999–2008. Since voting data were given less often (in general in November
of even-numbered years) these data were used, where available, as initial conditions
V (0)+M(0). In other cases V (0) was estimated along with other model parameters
as discussed below. Table 5 gives the time periods modeled as well as the initial
conditions used. The size of each class is given as a percentage of the total target
population (the size of which is also given in the table). The rescaled Green Party
registration data is also shown in Figure 5. As can be seen in the graph, some states
saw a noticeable change in the Green Party’s trajectory following the November 2004
election, and so the data for these states (DC, CA, OR, NY) was broken into two
subseries (three in the case of DC, which also underwent a visible change following
the 2006 election), with different parameter estimates for each subseries.
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Initial Final Initial Conditions
State time time (S(0), V (0),M(0)) β − φ αβ ε γ
ME Jun 1998 Nov 2006 (91.12, 8.58, 0.31) 5.27E–4 0.5022 1.00E–5 1.34E–4
DC Jun 2003 Sep 2004 (87.54, 8.61, 3.85) 0.0181 1.9911 1.02 6.72E–4

Jul 2005 Aug 2006 (79.52, 16.43*, 4.05) 1.06E–3 0.200 0.468 0.0115
Jan 2007 Nov 2008 (89.04, 6.63*, 4.33) 1.66E–3 1.15 2.83 1.02E–7

CA Feb 1999 Feb 2004 (94.87, 3.09, 2.03) 4.94E–4 0.7188 1.69E–5 3.73E–4
Oct 2004 May 2008 (91.87, 4.80*, 3.32) 0.0105 0.2193 0.162 1.94E–6

OR Jan 2001 Oct 2004 (88.45, 10.26, 1.29) 1.56E–4 1.45 2.99E–5 1.29E–4
Nov 2004 Mar 2009 (96.06, 1.70*, 2.23) 0.0524 0.781 2.93 1.00E–6

NY Apr 1999 Mar 2004 (99.27, 0.73, 0.01) 0.0119 0.352 4.00E–3 4.33E–4
Nov 2004 Mar 2008 (98.65, 0.16*, 1.19) 0.0567 0.283 3.54 1.00E–6

MD Aug 2000 Mar 2009 (98.17, 1.32, 0.01) 0.0103 1.03 2.40E–3 1.93E–4
PA Apr 2001 Nov 2006 (97.33, 2.55, 0.11) 1.01E–5 0.329 1.37E–6 9.85E–4

Table 5. Estimated model parameters, for the seven U.S. states
(and district) used in the case study. States are listed in decreasing
order of proportional membership M to facilitate comparison with
Figure 5. Initial conditions v(0) marked with asterisks *, as well as
all model parameters (except µ), were estimated by data fitting as
described in the main text. All rates are given in units of 1/days;
values below 0.01 are given in scientific notation.
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Figure 5. Green Party registration data for the seven states (and
district) used in the case study, shown as percentages of the target
population.

Data fitting used the program Berkeley Madonna 8.3 to obtain a least-squares
fit to the Green Party registration data M(t) for the model parameters β − φ, αβ,
ε, and γ, and, where necessary, initial conditions. (β − φ and αβ were estimated
directly, rather than α, β and φ separately, in order to reduce the number of free
parameters.) The estimation process was iterated until the estimates were not on
target interval boundaries, and this optimization was carried out 10 times for each
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State Period R1 R2 R3 Stable equilibria (v∗,m∗)
ME 1998–2006 9.44 2.62 43.5 E3 = (34.15, 65.84)
DC 2003–2004 0.18 − 72.4 E1 = (0, 0), E3 = (6.81, 89.30)

2005–2006 0.0023 − 38.9 E1 = (0, 0), E3 = (0.39, 98.63)
2007–2008 0.00059 − − E1 = (0, 0)

CA 1999–2004 7.88 7.11 81.3 E3 = (12.28, 87.71)
2004–2008 0.065 − − E1 = (0, 0)

OR 2001–2004 2.06 1.45 71.8 E3 = (35.40, 64.59)
2004–2009 0.018 − − E1 = (0, 0)

NY 1999–2004 2.93 6.23 53.4 E3 = (10.58, 89.27)
2004–2008 0.016 − − E1 = (0, 0)

MD 2000–2009 4.20 3.21 72.1 E3 = (23.76, 76.16)
PA 2001–2006 0.21 − 64.8 E1 = (0, 0), E3 = (4.84, 95.14)

Table 6. Reproductive numbers and stable equilibria for the one-
track model, calculated using parameter estimates from Table 5.
Reproductive numbers not given are negative. Equilibria are given
as percentages of the target population.

state (with different initial guesses) to obtain the best possible fit. The resulting
estimates are also given in Table 5. These estimates were then used to determine the
state of the system in each state by calculating reproduction numbers and predicted
end states (equilibria); results are shown in Table 6.

4.2. Results. As seen in Figure 5, the data indicate a clear period of growth for
the Green Party in the selected states during the first five years of the twenty-first
century. However, for some states (DC, CA, OR, NY) the data also show a visible
decrease beginning at the end of 2004. The data indicate a clear change in the
political landscape in these states following the November 2004 election, in which
the positive trends the Green Party had been seeing in recent years reversed, and
voters left the Green Party, probably for the Democratic Party which saw gains
in the 2006 and 2008 elections. The DC Greens rallied in 2005 but experienced
this same trend reversal following the 2006 election. In each case, Table 5 suggests
that the primary reason for this change was a significant jump in the attention the
target population paid to the media and the activities of the two primary political
parties, as evidenced by a marked (orders of magnitude) increase in the value of the
parameter ε (despite, in most cases, a simultaneous increase in the net peer voter
influence β − φ).

The other three states in this study (ME, MD, PA), on the other hand, have
continued to see healthy sustained growth in the Green Party over the past decade,
although the growth in Maine appears nearly meteoric compared to the slow build-
ing up in Maryland and Pennsylvania. This difference is reflected in the much
higher value of R1 for Maine (cf. Table 6). The parameter estimates for Maine
are much lower than for Maryland (cf. Table 5), likely reflecting the lower overall
person-to-person contact rate (Maine has no large urban areas, whereas Maryland’s
population is concentrated in them) as well as perhaps lower sensitivity to others’
opinions, but the ratios reflected in the threshold quantities provide fertile ground
for the Green Party’s growth. Our one-track model predicts (Table 6) a slightly
higher equilibrium level of proportional participation in MD than in ME, but it will
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take much longer to reach that end state (during which time political influences
may change).

Pennsylvania, meanwhile, appears to be in a more unusual situation, as the
parameter estimates obtained from the data suggest the presence of a backward
bifurcation as discussed in Section 3: Here the tipping-point thresholds (R1, R2) do
not appear to favor the long-term survival of the Green Party, but an initially large
influx of Green voters would allow the party to thrive, even enjoying majority status
among the target voting population. The reason for this phenomenon (also seen in
the initial periods for DC) can be observed in the parameter estimates, which show
a low general sensitivity β − φ to the passive influence of community peers, but a
high sensitivity αβ to grassroots activists (relative to other PA parameters), so that
a sufficiently high core of party activists could sustain the party. Despite its initial
similarity to Maryland in terms of the proportional data illustrated in Figure 5,
the growth of the Pennsylvania Greens is indicated by the model to be part of a
transient response—it is just that, in this system, transient responses can last on
the order of decades, during which political influences can change significantly.

5. Analysis of the Two-Track Model. Having thoroughly examined and inter-
preted the one-track model, we now perform analysis on the original, heterogeneous
two-track model. Since the added complexity of this model precludes a complete
qualitative analysis, we shall make use of numerical analysis when necessary to
demonstrate behavior analogous to that exhibited by the simpler model.

First, we proportionalize the two-track model in the same way we did for the
one-track model to get:

dh

dt
= pµ+ εHvH + φH(h+ σl)vH − βH(vH + σvL + αm)h− µh, (21)

dl

dt
= (1− p)µ+ εLvL + φL(l + σh)vL − βL(σvH + vL + αm)l − µl, (22)

dvH
dt

= βH(vH + σvL + αm)h− εHvH − φH(h+ σl)vH − γmvH − µvH , (23)

dvL
dt

= βL(σvH + vL + αm)l − εLvL − φL(l + σh)vL − γmvL − µvL, (24)

dm

dt
= γmvH + γmvL − µm. (25)

5.1. The Party-Free Equilibrium (PFE) and R′
1. The two-track model, like

the simpler version, includes a party-free equilibrium. Observing that v∗H = v∗L =
m∗ = 0 satisfies dvH/dt = dvL/dt = dm/dt = 0, we substitute into dh/dt = dl/dt =
0 to find the PFE; E1 is (p, 1−p, 0, 0, 0). The stability of E1 is again tied to the first
threshold quantity, which we shall denote R′

1 (we shall use prime superscripts to
denote thresholds for the two-track model) and calculate using the next-generation
operator method [5], where vH , vL and m are considered the infective classes:

R′

1 =
1

2

[

rHH + rLL +
√

(rHH − rLL)2 + 4 rLH rHL

]

, (26)

where

rHH = p
βH − φH

µ+ εH + (1 − p)σφH

and rLL = (1− p)
βL − φL

µ+ εL + pσφL

,
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respectively, are the high-affinity and low-affinity analogues of R1 (that is, the
influence of vH on h, and of vL on l), and

rLH = p
βHσ

µ+ εL + pσφL

and rHL = (1 − p)
βLσ

µ+ εH + (1− p)σφH

measure the cross-affinity influences (of vL on h and vH on l). See Appendix B for
calculations.

R′
1 can be interpreted as the average number of individuals converted into a third-

party voter (in either voting class) by an individual in vH or vL introduced into a
population where no one yet votes for the given party. The average is somewhat
complicated, as it involves four different contributing influences, each represented
by one of the four r’s in (26). Each of these component numbers has the same form
as R1 for the one-track model (q.v.), but measures of conversion of high-affinity
voters are multiplied by a factor of p, the proportion of the population which has a
high affinity for the given party, while measures of conversion of low-affinity voters
are multiplied by the proportion 1−p of low-affinity individuals. In addition, cross-
affinity influences are reduced by the factor σ. Note that in the extreme cases p = 0
and p = 1 R′

1 reduces to R1.
We can further interpret the expression for R′

1 in political terms by observing
that

max(rHH , rLL) < R′

1 < max(rHH , rLL) +
√
rLH rHL (27)

(again see Appendix B for details). That is, R′
1 is at least as great as each of

the within-track conversion efficiencies, and exceeds the maximum of the two (pre-
sumably rHH) by less than the contribution of cross-track influences. This latter
contribution is the geometric mean of two terms representing a two-stage process,
in which a voter in one track converts an individual of the opposite affinity class
into a third-party voter, who then influences an individual in the first track to join
the voting class of the original voter, thereby completing the cycle. Because this
cross-affinity cycle has two stages, the appropriate measure of its efficiency is a geo-
metric mean of the two individual stages. In the case that there is no cross-affinity
influence (σ = 0), the tracks decouple completely at this stage, and (27) reduces to
R′

1 = max(rHH , rLL).
The PFE is locally stable when R′

1 < 1, and unstable when R′
1 > 1. In other

words, each third-party voter introduced into a population that includes high-
affinity and low-affinity individuals must influence, on average, more than one per-
son to vote for the third party during his/her voting lifetime, in order for the
third-party voter classes to persist, with the average defined by R′

1.

5.2. The Member-Free Equilibrium (MFE) and R′
2. The two-track model

also has a second threshold parameter R′
2. Analogous to R2 from the one-track

model, we define R′
2 as the average number of third-party voters (VH and/or VL)

a member can convert into M if introduced into a population of them. Since R′
2

is primarily concerned with the transition from third-party voting to membership,
we conveniently regard M as the only infectious class, in order to apply the next-
generation operator method to determine this threshold. We then calculate, from
(5) (or (25)):

∂

∂M

(

dM

dt

)

= γ(vH + vL)− µ;
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since this is scalar we seek simply the positive part divided by the term that is
subtracted (departing M):

R′

2 =
γ

µ
(v∗H2 + v∗L2) ,

where v∗H2 and v∗L2 are the equilibrium values at the MFE. This expression is anal-
ogous to that for the one-track model,

R2 =
γ

µ
v∗ =

γ

µ

(

1− 1

R1

)

.

Solving explicitly for the MFE of the two-track model is complicated, but we can
show enough to suggest that, as expected, it is unique and exists only for R′

1 > 1.
Since we have m∗ = 0, any MFE must be an equilibrium of the subsystem

dvH
dt

=βH(vH + σvL)(p− vH)− φH(p− vH + σ(1− p− vL))vH − (µ+ εH)vH ,

(28)

dvL
dt

=βL(σvH + vL)(1 − p− vL)− φL(1− p− vL + σ(p− vH))vL − (µ+ εL)vL,

(29)

since we can now rewrite h = p − vH and l = 1 − p − vL. The two resulting
equilibrium conditions can be simplified to a single equation of degree 4, which
admits up to 4 solutions. One of these is the PFE, which can be factored out to
leave a cubic equation for the MFE. It can be shown that the constant term in
this cubic equation is zero precisely when R′

1 = 1, so that the number of positive
solutions changes by one when R′

1 crosses 1.
In the special case that σ = 0 (no cross-affinity influence), the system (28)–

(29) decouples, yielding equilibria E1(0, 0), E2a(ṽ
∗
H , 0), E2b(0, ṽ

∗
L), and E2c(ṽ

∗
H , ṽ∗L),

where

ṽ∗H = p− µ+ εH
βH − φH

and ṽ∗L = (1 − p)− µ+ εL
βL − φL

are meaningful only if positive, i.e., if rHH > 1 and rLL > 1, respectively. A
straightforward calculation of the Jacobian matrix shows that, within this subsys-
tem,

• if R′
1 < 1 (rHH < 1 and rLL < 1), the only equilibrium is E1, which is locally

asymptotically stable (LAS);
• if rHH > 1 and rLL < 1, E1 is unstable but E2a is LAS;
• if rHH < 1 and rLL > 1, E1 is unstable but E2b is LAS;
• if rHH > 1 and rLL > 1, E1, E2a and E2b are all unstable but E2c is LAS.

Regardless of the value of σ, it is straightforward to show that all solutions
of (28)–(29) which begin within [0, p] × [0, 1 − p] remain within those bounds, by
observing that dvH/dt < 0 when vH = p and 0 ≤ vL ≤ 1− p, and that dvL/dt < 0
when vL = 1− p and 0 ≤ vH ≤ p. One can also exclude limit cycles from solutions
of (28)–(29) under the assumptions that βH > φH and βL > φL, via the usual
application of Dulac’s Criterion:

∂

∂vH

(

1

vHvL

dvH
dt

)

< 0,
∂

∂vL

(

1

vHvL

dvL
dt

)

< 0.

We can therefore apply the Poincaré-Bendixson Theorem to conclude that the equi-
libria of this system with σ = 0 identified above as locally stable, are in fact globally
stable.
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Figure 6. A bifurcation diagram for the two-track model illus-
trating a backward bifurcation at R′

2 = 1 (see closer view at right),
multiple saddle-node bifurcations, and survival equilibria extend-
ing below R′

1 = 1 (R′
2 = 0). Parameter values used are p = 0.1,

βL = 0.2, εH = 0.25, εL = 0.5, φH = φL = 0.1875, α = 1.25,
σ = 0.8, γ = 0.6, µ = 0.05; βH varies. All rates are in years−1 (p,
α, σ are dimensionless).

We can also differentiate the equilibrium conditions for (28)–(29) implicitly by σ
to see what happens as σ increases from zero: for instance,

∂vL
∂σ

∣

∣

∣

σ=0
=

−βLv
∗
H(1− p− v∗L) + φLv

∗
L(p− v∗H)

(βL − φL)(1 − p− 2v∗L)− (µ+ εL)
,

so
∂vL
∂σ

∣

∣

∣

E2a,σ=0
=

−βLṽ
∗
H(1− p)

(βL − φL)(1− p)− (µ+ εL)
.

Thus when rHH > 1 and rLL > 1, the numerator is negative and the denominator
is positive, so that E2a exits the state space as σ increases from zero. A similar
calculation holds for E2b.

Since (28)–(29) is a subsystem of (21)–(25) (in which m(t) ≡ 0), stability in
the subsystem does not imply stability in the full system, but instability in the
subsystem does imply instability in the full system. Thus the full system (21)–(25)
has at most one stable MFE when σ = 0 (and, by continuity using the above result
of implicit differentiation, for σ sufficiently small), that stability depending upon
the additional dimension (m) not present in (28)–(29), as measured by R′

2. While
R′

2 is not expressed explicitly, given the implicitness of v∗H2 and v∗L2, the observed
uniqueness of the MFE allows us to draw conclusions about the two-track model
numerically.

5.3. Survival Equilibria. Although the equilibrium conditions for (21)–(25) are
too complicated to solve outright (apart from the fact that v∗H + v∗L = µ/γ for any
survival equilibrium, from (25)), we can verify numerically not only their existence
as expected when R′

2 > 1, but also the existence, under certain conditions, of a
backward bifurcation at R′

2 = 1 just as observed for the one-track model.
Figure 6 shows a situation analogous to that depicted in Figure 4 for the one-track

model, in which survival equilibria may exist even below the PFE/MFE threshold
(R2 = 0 or R′

2 = 0); in Figure 7 the critical (minimum) value of R′
2 is between 0 and

1. Both figures, however, also demonstrate the existence of multiple locally stable
survival equilibria near R′

2 = 1 (see the close-up in Figure 6), meaning that for some
parameter values there are two different levels at which the party may stabilize,
in addition to the stable (for R′

2 < 1) extinction equilibria PFE/MFE. In these
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Figure 7. A bifurcation diagram for the two-track model illus-
trating a backward bifurcation at R′

2 = 1. Parameter values
used are p = 0.1, βH = 10, βL = 0.2, εH = 0.25, εL = 0.5,
φH = φL = 0.1875, α = 1.25, σ = 0.8, µ = 0.05; γ varies. All rates
are in years−1 (p, α, σ are dimensionless).

situations, the initial number of party members plays a huge role in determining
whether the party surges to major growth, languishes, or dies out entirely.

Although the parameter values used to create these figures are idealized for il-
lustration purposes, the value p = 0.1 reflects an estimated 10% of the voting
population having high affinity for the Green Party’s agenda, and other values re-
flect the distinctions in peer-driven behavior described by the model for the two
affinity classes. In addition, similar curves can be obtained using a wide range of
values for model parameters. Unfortunately, the complexity of the two-track model
prevents an explicit calculation of a quantity analogous to R3 which measures the
ability of the member class to recruit “susceptible” voters from both affinity classes
to become third-party voters. The same interpretation applies, however: it is the
work of party members in recruiting voters that enables a party to persist when
third-party voters’ influence is too weak.

6. Conclusion. The models described in this study investigate in mathematical
terms the consequences of our assumptions about the factors driving the growth
and persistence of a third political party arising through grassroots efforts. In
particular, we assume a hierarchical structure in which party members (activists)
play a different, more extensive role in party survival than party voters. We also
assume that the dominant influences are primary contacts among third-party voters
and members and the general public, manifested in our models as nonlinear terms
involving the sizes of the two groups making contact. These nonlinearities govern
the behavior of the models—that is, the fate of the party under study—through
threshold quantities that describe the system’s tipping points. Our results should be
taken as implications of the assumptions that such primary contacts, and not other
factors (apart from affinity as defined for our two-track model), drive individuals’
decisions whether to support third political parties at any level.

The primary result of our analysis is that our models identify, and provide a
way to measure, the three factors that determine the party’s survival. Each of
these factors is a reproductive number that describes the ability of a given class
in the party structure to recruit others. R1 and R′

1 give the average number of
unaffiliated voters recruited per third-party voter, for the simplified and general
model, respectively. This first threshold quantity measures the voting class’s ability
to replace or sustain itself. R2 and R′

2, meanwhile, describes the efficiency with
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which third-party members convince third-party voters to become members. This
average number of new members recruited per existing member presupposes the
success of the first stage of recruitment: existing third-party voters recruiting new
ones; that is, R1 > 1, or else R2 < 0, which is meaningless except to indicate the
failure of a recruitment structure in which party members play no role in recruiting
new voters. Finally, R3 quantifies the ability of party members to recruit new
voters directly from the unaffiliated (with this party) public. The growth of the
Green Party in states like Maine and Maryland, and its recent decline in states like
California and Oregon, illustrate the effect of these tipping-point thresholds (cf.
[10]).

The model’s prediction of survival states in scenarios where the primary, hier-
archical recruitment structure is not strong enough (R2 < 1, and even R1 < 1) to
allow a party to arise—that is, political trends are not favorable and the resulting
influence of peer pressure to vote for and support a given party is weak—explains the
persistence of established third parties during periods of adverse conditions, when
political winds blow against them. In particular, when party activists (members)
are sufficiently capable of finding and recruiting new voters directly (as measured
by R3 > 1), a large enough core of committed party members can ensure the party’s
survival. In cases where the political environment was favorable for a time (R2 > 1),
this minimum core size is typically reached quickly. This reaching across traditional
hierarchical structures (rather than party members interacting primarily with those
who already vote for the party) provides a robustness to the phenomenon that
manifests mathematically in the backward bifurcations illustrated in earlier sec-
tions. Backward bifurcations also underscore the importance of initial conditions
(having enough initial party members) in enabling that robustness. This scenario
is typified by the case study of the Green Party in Pennsylvania.

Our general model classifies the general voting population by affinity to the ideas
and goals of a given third party. The form of the expression for R′

1 illustrates how
a party’s ability to take hold in even a small subset of the population (the high-
affinity track) affects the party’s survival in the population as a whole: since R′

1 is
greater than either of the within-track voting replacement numbers (analogous to
R1), a successful enough recruitment within the high-affinity track can maintain the
party. Furthermore, the stratification into two tracks creates the potential, as illus-
trated in Figures 6 and 7, for multiple stable survival states, which facilitate party
growth since the additional states require fewer initial members than the original
one. Our models could easily be extended to a stratification with intermediate levels
of affinity, each of which would make its own differential (R1-like) contribution to
determining the overall recruitment potential of a given third party (analogous to
R′

1), in addition to increasing the diversity of possible survival states.
Even though we used available data to estimate parameters, we cannot claim to

have measured the strength of the various influences directly. Our models provide
qualitative measures for the efficiency of parties’ recruitment strategies, identifying
which factors interact, and how. The accuracy of these measures hinges, of course,
on the underlying assumptions articulated in Section 2.1. Since it is often difficult
in practice to quantify the strength of another’s opinions and arguments in influ-
encing one’s opinion, our models can also be interpreted as an illustration of how
individual interactions within a population combine to exert a single collective in-
fluence observable only at the population level. Finally, it should be noted that the
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deterministic nature of our models ignores the stochastic aspect of individual inter-
actions (such as an exceptionally charismatic individual): individual variability is a
critical factor when considering very small groups. Here we have described political
behavior in terms of population averages, but the first stages of any movement are
entirely dependent on the particular personalities involved. Therefore our models
should be considered as picking up at the point where a grassroots movement has
become sufficiently organized to become a political force.
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Appendix A. Equilibrium Analysis for the One-Track Model.

A.1. Proof of Proposition 1: Existence of E3 and E4. We begin with the
survival equilibrium condition f(m∗) = m∗2 +BM∗ + C = 0, where (from (15))

B =

(

β − φ

αβ

)

µ

γ
−
(

1− µ

γ

)

+
µ

αβ
, C = −µ

γ

[

β − φ

αβ

(

1− µ

γ

)

− µ+ ε

αβ

]

.

We rewrite these expressions by defining the following terms:

q =
β − φ

αβ
, r =

µ

µ+ ε
, x =

αβ

µ+ ε
, y =

γ

µ
.

By assumption, β > φ, γ > µ, and α > 1, so that 0 < q < 1, 0 < r < 1, and y > 1.

In these terms, R1 = qx, R2 = y
(

1− 1
qx

)

, and

B =
1 + q

y
−
(

1− r

x

)

, C = − q

y

(

1− 1

y
− 1

qx

)

.

In order to be meaningful, solutions must fall within the interval (0, 1−v∗] (since
m∗ > 1− v∗ will make s∗ = 1− v∗ −m∗ < 0). We calculate

f(1− v∗) = f

(

1− 1

y

)

=
r

x
+

1− r

xy
> 0

and

f ′(1− v∗) = 2(1− v∗) +B = 1− 1− q

y
+

r

x
> 0 (since 1− q < 1 < y).

These two inequalities imply that any roots of f lie to the left of 1− v∗. Next note
that f(0) = C = − q

y2 (R2−1). Then when R2 > 1, f(0) < 0, so there is exactly one

solution m∗
+ in (0, 1 − v∗). When R2 < 1, f(0) > 0, so the number of solutions in

(0, 1− v∗) is even. In this case, both solutions m∗
± are in (0, 1− v∗) precisely when

B2 − 4C ≥ 0 (the solutions are real) and B < 0 (the parabola’s vertex m = −B/2
lies to the right of 0).

The condition B < 0 can be shown equivalent to x > r and y > ŷB ≡ (1+q) x
x−r

.

The condition C > 0 (i.e., R2 < 1) can be shown equivalent to qx < 1 or y < ŷC ≡
qx

qx−1 . The condition B2 − 4C ≥ 0 becomes

(

1 + q

y
− x− r

x

)2

+ 4
q

y

(

1− 1

y
− 1

qx

)

≥ 0,

and multiplying by x2y2 we get

(x− r)2y2 − 2x [(1− q)(x − r) + 2(1− qr)] y + (1− q)2x2 ≥ 0.

Solving the quadratic inequality in y, this means y must not be between the two
positive roots

ŷ± ≡ x
(x−r)2

{

[(1− q)(x − r) + 2(1− qr)] ± 2
√

(1− qr) [(1 − q)(x− r) + (1− qr)]
}

.

Thus in order to have two survival equilibria, we must have x > r, ŷB < y < ŷC ,
and either y ≤ ŷ− or y ≥ ŷ+.

In order to simplify these criteria, we compare the threshold values for y. We
find that ŷ− < ŷB < ŷ+ is equivalent (after substitution) to

−
√

(1 − qr) [(1− q)(x− r) + (1− qr)] < qx− 1

<
√

(1 − qr) [(1− q)(x− r) + (1− qr)],
(30)



THE SPREAD OF POLITICAL THIRD PARTIES 29

1 2 3 4 5

1

2

3

4

5

6

7

8

1

y

xr 1/q x̂+

y

y

ŷ
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Figure 8. Four threshold curves illustrating the survival equilib-
rium conditions

or simply |qx− 1| <
√

(1 − qr) [(1− q)(x − r) + (1− qr)]. Squaring both sides and
simplifying leads to the compound inequality

r < x < x̂+ ≡ 1 + q(1− r)

q2
.

The lower bound r corresponds to the vertical asymptote in x shared by ŷ± and
ŷB. Since q < 1, 1

q
< 1

q2
< x̂+, so at the upper bound qx − 1 > 0, and it is the

second inequality in (30) that is violated. That is, when x = x̂+, ŷB = ŷ+. Thus
it is always true that ŷ− < ŷB, so the criterion y > ŷB allows us to discard the
condition y ≤ ŷ− in favor of y ≥ ŷ+.

If we solve the inequality ŷB < ŷC for x (when qx > 1), we find again the
condition x < x̂+, indicating that the graphs of ŷB, ŷC , and ŷ+ all cross at x = x̂+.
Further similar computation can show that ŷ+ < ŷC except at x = x̂+, where they
are tangent. We thus require r < x < x̂+ and ŷ+ ≤ y < ŷC (the latter inequality
only for qx > 1). A graph illustrating all four curves is given in Figure 8.

To put the survival equilibrium conditions back in terms of the original param-
eters, we see that r < x < x̂+ becomes

µ

µ+ ε
<

αβ

µ+ ε
<

1 + β−φ
µ+ε

ε
µ+ε

(

β−φ
µ+ε

)2 ;

each of the inequalities can be solved for αβ/µ to make

αβ

µ
> max

(

1,
β − φ

µ+ ε

β − φ− ε

µ

)

.

Note that the last expression in the inequality above is the product of R1 and
another fraction whose value exceeds 1 precisely when R1 does. Thus if R1 < 1, the
condition is simply αβ

µ
> 1, while if R1 > 1 the condition is αβ

µ
> R1(β−φ−ε)/µ. It

is not so simple to rewrite y > ŷ+; however, we can return to the original conditions
B < 0, B2 − 4C ≥ 0, which can be rewritten more simply, either as R3a > 1,
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R3b > 1 as in the statement of Proposition 1, or as:

B < 0 ⇔ 1

αβ
+

(

1 +
β − φ

αβ

)

1

γ
<

1

µ
, (31)

B2 − 4C ≥ 0 ⇔
√

1

αβ
+

√

(

1− β − φ

αβ

)

1

γ
+ h(ε/γ) ≤

√

1

µ
, (32)

where

h(ε/γ) = 2

√

1

αβ

√

1

µ

(√

1 +
ε

γ
− 1

)

> 0.

In order to rewrite the condition B2 − 4C ≥ 0 in the form (32), we substitute B
and C from (15) and get:

[

µ

αβ
+

(

1 +
β − φ

αβ

)

µ

γ
− 1

]2

− 4
µ

γ

[

µ+ ε

αβ
− β − φ

αβ

(

1− µ

γ

)]

≥ 0.

Expansion, summing like terms, and completing the square yields
[

µ

αβ
−
(

1− β − φ

αβ

)

µ

γ
+ 1

]2

≥ 4
µ

αβ

(

1 +
ε

γ

)

.

Next we take the square root of both sides,
∣

∣

∣

∣

µ

αβ
−
(

1− β − φ

αβ

)

µ

γ
+ 1

∣

∣

∣

∣

≥ 2

√

µ

αβ

(

1 +
ε

γ

)

.

Since we require µ < γ and β > φ, then

µ

αβ
−
(

1− β − φ

αβ

)

µ

γ
+ 1 =

µ

αβ
+

β − φ

αβ

µ

γ
+

(

1− µ

γ

)

> 0,

so we can drop the absolute value bars. Finally, rearranging, we get

(

1− β − φ

αβ

)

1

γ
≤ 1

µ
− 2

√

1

αβ

1

µ

(

1 +
ε

γ

)

+
1

αβ
.

In the case that ε = 0, this inequality can be further simplified by factoring the
right-hand side as a perfect square, taking the square root of both sides, and using
the fact that (31) implies 1/αβ < 1/µ, to get

√

1

αβ
+

√

(

1− β − φ

αβ

)

1

γ
≤

√

1

µ
.

We can apply the same technique to obtain (32).

A.2. Stability Analysis for E3. From the end of Section 3.3, it remains to show
that tr J1(E3) < 0 when R2 ≥ 2. This condition on the trace is equivalent to

m∗

+ > L ≡
(β − φ)

(

1− 2µ
γ

)

− (µ+ ε)

(β − φ+ αβ + γ)
.

In terms of q, r, x and y as defined in the previous section,

L =
q
(

1− 1
qx

− 2
y

)

(

1 + q + yr
x

) , B =

(

1 + q + yr
x

)

y
− 1, C = − q

y

(

1− 1

qx
− 1

y

)

.
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Now the stability condition is

m∗

+ =
1

2

[

−B +
√

B2 − 4C
]

> L
√

B2 − 4C > B + 2L

B + 2L < 0, or B + 2L > 0 and B2 − 4C > B2 + 4BL+ 4L2

B + 2L > 0 ⇒ −C > BL + L2

B + 2L > 0 ⇒ q

y

(

1− 1

qx
− 1

y

)

>
q

y

(

1− 1

qx
− 2

y

)

− L+ L2

B + 2L > 0 ⇒ 0 > − q

y2
− L+ L2

Here we multiply by −
(

1 + q + yr
x

)2
/q, expand, and simplify to get

0 <

(

1 + q

y
+

r

x

)2

+

(

1− 1

qx
− 2

y

)(

1 +
1 + yr

x
+

2q

y

)

,

which is true since

R2 ≥ 2 ⇔
(

1− 1

qx
− 2

y

)

≥ 0.

This completes the verification that E3 is LAS when it exists.

Appendix B. R′
1 for the Two-Track Model. We calculate the reproductive

number R′
1 of the two-track model using the next-generation operator method where

R′
1 is analogous to R1 of the one-track model. The party-free equilibrium E1 of (21)–

(25) is (p, (1 − p), 0, 0, 0). Differentiating (23)–(25) with respect to the “infective”
variables vH , vL, and m, and substituting the PFE values yields the following
“mini-Jacobian” matrix:

A =





(βH − φH)p− wH βHσp αβHp
βLσ(1 − p) (βL − φL)(1− p)− wL αβL(1− p)

0 0 −µ



 ,

where wH = µ + εH + φHσ(1 − p) and wL = µ + εL + φLσp. We next rewrite

A = M̃ − D̃, where the entries of M̃ are nonnegative and D̃ is a diagonal matrix:

M̃ =





(βH − φH)p βHσp αβHp
βLσ(1 − p) (βL − φL)(1 − p) αβL(1− p)

0 0 0





and

D =





µ+ εH + φHσ(1− p) 0 0
0 µ+ εL + φLσp 0
0 0 µ





Now R′
1 is the dominant (largest) eigenvalue of

MD−1 =







(βH−φH)p
µ+εH+φHσ(1−p)

βHσp
µ+εL+φLσp

αβHp/µ
βLσ(1−p)

µ+εH+φHσ(1−p)
(βL−φL)(1−p)
µ+εL+φLσp

αβL(1− p)/µ

0 0 0







=





rHH rLH αβHp/µ
rHL rLL αβHp/µ
0 0 0



 .
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The three eigenvalues are 0 and

1

2

[

rHH + rLL ±
√

(rHH − rLL)2 + 4rHL rLH

]

;

R′
1 takes the positive square root in the latter expression. By inspection we can see

that for the extreme cases p = 0 and p = 1, R′
1 simplifies to R1 for the one-track

model.
Since the second term inside the radical is positive, we have that

R′

1 >
1

2

[

rHH + rLL +
√

(rHH − rLL)2
]

=
1

2
[rHH + rLL + |rHH − rLL|]

=
1

2
[2 max(rHH , rLL)] = max(rHH , rLL).

Since, for positive numbers a and b,
√
a+ b <

√
a+

√
b, we also have that

R′

1 <
1

2

[

rHH + rLL +
√

(rHH − rLL)2 + 2
√
rHL rLH

]

= max(rHH , rLL) +
√
rHL rLH .
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