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ABSTRACT
There is a widespread intuitive sense that different kinds of infor-
mation spread differently on-line, but it has been difficult to eval-
uate this question quantitatively since it requires a setting where
many different kinds of information spread in a shared environ-
ment. Here we study this issue on Twitter, analyzing the ways in
which tokens known as hashtags spread on a network defined by
the interactions among Twitter users. We find significant variation
in the ways that widely-used hashtags on different topics spread.

Our results show that this variation is not attributable simply to
differences in “stickiness,” the probability of adoption based on one
or more exposures, but also to a quantity that could be viewed as a
kind of “persistence” — the relative extent to which repeated expo-
sures to a hashtag continue to have significant marginal effects. We
find that hashtags on politically controversial topics are particularly
persistent, with repeated exposures continuing to have unusually
large marginal effects on adoption; this provides, to our knowl-
edge, the first large-scale validation of the “complex contagion”
principle from sociology, which posits that repeated exposures to
an idea are particularly crucial when the idea is in some way con-
troversial or contentious. Among other findings, we discover that
hashtags representing the natural analogues of Twitter idioms and
neologisms are particularly non-persistent, with the effect of mul-
tiple exposures decaying rapidly relative to the first exposure.

We also study the subgraph structure of the initial adopters for
different widely-adopted hashtags, again finding structural differ-
ences across topics. We develop simulation-based and generative
models to analyze how the adoption dynamics interact with the net-
work structure of the early adopters on which a hashtag spreads.
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1. INTRODUCTION
A growing line of recent research has studied the spread of infor-

mation on-line, investigating the tendency for people to engage in
activities such as forwarding messages, linking to articles, joining
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groups, purchasing products, or becoming fans of pages after some
number of their friends have done so [1, 4, 7, 9, 15, 20, 22, 23, 29].
The work in this area has thus far focused primarily on identify-
ing properties that generalize across different domains and differ-
ent types of information, leading to principles that characterize the
process of on-line information diffusion and drawing connections
with sociological work on the diffusion of innovations [27, 28].

As we begin to understand what is common across different forms
of on-line information diffusion, however, it becomes increasingly
important to ask about the sources of variation as well. The vari-
ations in how different ideas spread is a subject that has attracted
the public imagination in recent years, including best-selling books
seeking to elucidate the ingredients that make an idea “sticky,” fa-
cilitating its spread from one person to another [11, 16]. But despite
the fascination with these questions, we do not have a good quanti-
tative picture of how this variation operates at a large scale.

Here are some basic open questions concerning variation in the
spread of on-line information. First, the intuitive notion of “stick-
iness” can be modeled in an idealized form as a probability — the
probability that a piece of information will pass from a person who
knows or mentions it to another person who is exposed to it. Are
simple differences in the value of this probability indeed the main
source of variation in how information spreads? Or are there more
fundamental differences in the mechanics of how different pieces
of information spread? And if such variations exist at the level of
the underlying mechanics, can differences in the type or topic of
the information help explain them?

The present work: Variation in the spread of hashtags. In this
paper we analyze sources of variation in how the most widely-used
hashtags on Twitter spread within its user population. We find that
these sources of variation involve not just differences in the prob-
ability with which something spreads from one person to another
— the quantitative analogue of stickiness — but also differences in
a quantity that can be viewed as a kind of “persistence,” the rela-
tive extent to which repeated exposures to a piece of information
continue to have significant marginal effects on its adoption.

Moreover, these variations are aligned with the topic of the hash-
tag. For example, we find that hashtags on politically controversial
topics are particularly persistent, with repeated exposures continu-
ing to have large relative effects on adoption; this provides, to our
knowledge, the first large-scale validation of the “complex conta-
gion” principle from sociology, which posits that repeated expo-
sures to an idea are particularly crucial when the idea is in some
way controversial or contentious [5, 6].

Our data is drawn from a large snapshot of Twitter containing
large coverage of all tweets during a period of multiple months.



From this dataset, we build a network on the users from the struc-
ture of interaction via @-messages; for users X and Y , if X in-
cludes “@Y ” in at least t tweets, for some threshold t, we include
a directed edge from X to Y . @-messages are used on Twitter
for a combination of communication and name-invocation (such
as mentioning a celebrity via @, even when there is no expecta-
tion that they will read the message); under all these modalities,
they provide evidence that X is paying attention to Y , and with a
strength that can be tuned via the parameter t.1

For a given userX , we call the set of other users to whomX has
an edge the neighbor set of X . As users in X’s neighbor set each
mention a given hashtag H in a tweet for the first time, we look
at the probability that X will first mention it as well; in effect, we
are asking, “How do successive exposures to H affect the proba-
bility that X will begin mentioning it?” Concretely, following the
methodology of [7], we look at all users X who have not yet men-
tionedH , but for whom k neighbors have; we define p(k) to be the
fraction of such users who mention H before a (k + 1)st neighbor
does so. In other words, p(k) is the fraction of users who adopt
the hashtag directly after their kth “exposure” to it, given that they
hadn’t yet adopted it.

As an example, Figure 1 shows a plot of p(k) as a function of
k averaged over the 500 most-mentioned hashtags in our dataset.
Note that these top hashtags are used in sufficient volume that one
can also construct meaningful p(k) curves for each of them sepa-
rately, a fact that will be important for our subsequent analysis. For
now, however, we can already observe two basic features of the av-
erage p(k) curve’s shape: a ramp-up to a peak value that is reached
relatively early (at k = 2, 3, 4), followed by a decline for larger
values of k. In keeping with the informal discussion above, we de-
fine the stickiness of the curve to be the maximum value of p(k)
(since this is the maximum probability with which an exposure to
H transfers to another user), and the persistence of the curve to be
a measure of its rate of decay after the peak.2 We will find that, in
a precise sense, these two quantities — stickiness and persistence
— are sufficient to approximately characterize the shapes of indiv-
didual p(k) curves.

Variation in Adoption Dynamics Across Topics. The shape of
p(k) averaged over all hashtags is similar to analogous curves mea-
sured recently in other domains [7], and our interest here is in going
beyond this aggregate shape and understanding how these curves
vary across different kinds of hashtags. To do this, we first classi-
fied the 500 most-mentioned hashtags according to their topic. We
then average the curves p(k) separately within each category and
compare their shapes.3

1One can also construct a directed network from the follower re-
lationship, including an edge from X to Y if X follows Y . We
focus here on @-messages in part because of a data resolution is-
sues — they can be recovered with exact time stamps from the
tweets themselves — but also because of earlier research suggest-
ing that users often follow other users in huge numbers and hence
potentially less discriminately, whereas interaction via @-messages
indicates a kind of attention that is allocated more parsimoniously,
and with a strength that can be measured by the number of repeat
occurrences [17].
2We formally define persistence in Section 3; roughly, it is the ratio
of the area under the curve to the area of the largest rectangle that
can be circumscribed around it.
3In Section 2 we describe the methodology used to perform this
manual classification in detail. In brief, we compared independent
classifications of the hashtags obtained by disjoint means, involving
annotation by the authors compared with independent annotation
by a group of volunteers. Our results based on the average curves
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Figure 1: Average exposure curve for the top 500 hashtags.
P (K) is the fraction of users who adopt the hashtag directly af-
ter their kth exposure to it, given that they had not yet adopted
it

Many of the categories have p(k) curves that do not differ sig-
nificantly in shape from the average, but we find unusual shapes
for several important categories. First, for political hashtags, the
persistence has a significantly larger value than the average — in
other words, successive exposures to a political hashtag have an un-
usually large effect relative to the peak. This is striking in the way
that it accords with the “complex contagion” principle discussed
earlier: when a particular behavior is controversial or contentious,
people may need more exposure to it from others before adopting
it themselves [5, 6].

In contrast, we find a different form of unusual behavior from
a class of hashtags that we refer to as Twitter idioms — a kind
of hashtag that will be familiar to Twitter users in which com-
mon English words are concatenated together to serve as a marker
for a conversational theme (e.g. #cantlivewithout, #dontyouhate,
#iloveitwhen, and many others, including concatenated markers for
weekly Twitter events such as #musicmonday and #followfriday.)
Here the stickiness is high, but the persistence is unusually low; if
a user doesn’t adopt an idiom after a small number of exposures,
the marginal chance they do so later falls off quickly.

Subgraph Structure and Tie Strength. In addition to the person-
to-person mechanics of spread, it is also interesting to look at the
overall structure of interconnections among the initial adopters of
a hashtag. To do this, we take the first m individuals to mention
a particular hashtag H , and we study the structure of the subgraph
Gm induced on these first m mentioners. In this structural con-
text, we again find that political hashtags exhibit distinctive fea-
tures — in particular, the subgraphs Gm for political hashtags H
tend to exhibit higher internal degree, a greater density of triangles,
and a large of number of nodes not in Gm who have significant

arising from this classification are robust in the following sense:
despite differences in classification of some individual hashtags by
the two groups, the curves themselves exhibit essentially identical
behavior when computed from either of the two classifications sep-
arately, as well as from an intersection of the two classifications.



numbers of neighbors in it. This is again broadly consistent with
the sociological premises of complex contagion, which argues that
the successful spread of controversial behaviors requires a network
structure with significant connectivity and significant local cluster-
ing.

Within these subgraphs, we can consider a set of sociological
principles that are related to complex contagion but distinct from it,
centered on the issue of tie strength. Work of McAdam and others
has argued that the sets of early adopters of controversial or risky
behaviors tend to be rich in strong ties, and that strong ties are cru-
cial for these activities [25, 26] — in contrast to the ways in which
learning about novel information can correspondingly benefit from
transmission across weaker ties [13].

When we look at tie strength in these subgraphs, we find a some-
what complex picture. Because subgraphs Gm for political hash-
tags have significantly more edges, they have more ties of all strengths,
including strong ties (according to several different definitions of
strength summarized in Section 4). This aspect of the data aligns
with the theories of McAdam and others. However, the fraction
of strong ties in political subgraphs Gm is actually lower than the
fraction of strong ties for the full population of widely-used hash-
tags, indicating the overall greater density of edges in political sub-
graphs comes more dominantly from a growth in weak ties than
from strong ones. The picture that emerges of early-adopter sub-
graphs for political hashtags is thus a subtle one: they are structures
whose communication patterns are more densely connected than
the early-adopter subgraphs for other hashtags, and this connectiv-
ity comes from a core of strong ties embedded in an even larger
profusion of weak ties.

Interpreting the Findings. When we look at politically contro-
versial topics on Twitter, we therefore see both direct reflections
and unexpected variations on the sociological theories concerning
how such topics spread. This is part of a broader and important is-
sue: understanding differences in the dynamics of contentious be-
havior in the off-line world versus the on-line world. It goes with-
out saying that the use of a hashtag on Twitter isn’t in any sense
comparable, in terms of commitment or personal risk, to taking
part in activism in the physical world (a point recently stressed in a
much-circulated article by Malcolm Gladwell [12]). But the under-
lying issue persists on Twitter: political hashtags are still riskier to
use than conversational idioms, albeit at these much lower stakes,
since they involve publicly aligning yourself with a position that
might alienate you from others in your social circle. The fact that
we see fundamental aspects of the same sociological principles at
work both on-line and off-line suggests a certain robustness to these
principles, and the differences that we see suggest a perspective for
developing deeper insights into the relationship between these be-
haviors in the on-line and off-line domains.

This distinction between contentious topics in the on-line and
off-line worlds is one issue to keep in mind when interpreting these
results. Another is the cumulative nature of the findings. As with
any analysis at this scale, we are not focusing on why any one in-
dividual made the decisions they did, nor is it the case that that
Twitter users are even aware of all the tweets containing their ex-
posures to hashtags via neighbors. Rather, the point is that we still
find a strong signal in an aggregate sense — as a whole, the pop-
ulation is exhibiting differences in how it responds to hashtags of
different types, and in ways that accord with theoretical work in
other domains.

A further point to emphasize is that our focus in this work is on
the hashtags that succeeded in reaching large numbers of people.
It is an interesting question to consider what distinguishes a hash-

tag that spreads widely from one that fails to attract attention, but
that is not the central question we consider here. Rather, what we
are identifying is that among hashtags that do reach many people,
there can nevertheless be quite different mechanisms of contagion
at work, based on variations in stickiness and persistence, and that
these variations align in interesting ways with the topic of the hash-
tag itself.

Simulated Spreading. Finally, an interesting issue here is the in-
teraction between the p(k) curve and the subgraph Gm for a given
hashtag H — clearly the two develop in a form of co-evolution,
since the addition of members via the curve p(k) determines how
the subgraph of adopters takes shape, but the structure of this sub-
graph — particularly in the connections between adopters and non-
adopters — affects who is likely to use the hashtag next. To under-
stand how p(k) andGm relate to each other, it is natural to consider
questions of the following form: how would the evolution of Gm

have turned out differently if a different p(k) curve had been in
effect? Or correspondingly, how effectively would a hashtag with
curve p(k) have spread if it had started from a different subgraph
Gm? Clearly it is difficult to directly perform this counterfactual
experiment as stated, but we obtain insight into the structure of the
question by simulating the p(k) curve of each top hashtag on the
subgraph Gm of each other top hashtag. In this way, we begin to
identify some of the structural factors at work in the interplay be-
tween the mechanics of person-to-person influence and the network
on which it is spreading.

2. DATASET, NETWORK DEFINITION, AND
HASHTAG CLASSIFICATION

Data Collection and Network Definition. From August 2009 un-
til January 2010 we crawled Twitter using their publicly available
API. Twitter provides access to only a limited history of tweets
through the search mechanism; however, because user identifiers
have assigned contiguously since an early point in time, we simply
crawled each user in this range. Due to limitations of the API, if a
user has more than 3,200 tweets we can only recover the last 3,200
tweets; all messages of any user with fewer than this many tweets
are available. We collected over three billion messages from more
than 60 million users during this crawl.

As discussed in Section 1, in addition to extracting tweets and
hashtags within them, we also build a network on the users, con-
necting user X to user Y if X directed at least t @-messages to
Y . In our analyses we use t = 3, except when we are explicitly
varying this parameter. The resulting network contains 8,509,140
non-isolated nodes and 50,814,366 links. As noted earlier, there are
multiple ways of defining a network on which hashtags can viewed
as diffusing, and our definition is one way of defining a proxy for
the attention that users X pay to other users Y .

Hashtag Selection and Classification. To create a classification
of hashtags by category, we began with the 500 hashtags in the
data that had been mentioned by the most users. From manual in-
spection of this list, we identified eight broad categories of hashtags
that each had at least 20 clear exemplars among these top hashtags,
and in most cases significantly more. (Of course, many of the top
500 hashtags fit into none of the categories.) We formulated def-
initions of these categories as shown in Table 1. Then we applied
multiple independent mechanisms for classifying the hashtags ac-
cording to these categories. First, the authors independently anno-
tated each hashtag, and then had a reconciliation phase in which



Category Definition
Celebrity The name of a person or group (e.g. music group) that is featured prominently in entertainment news. Political figures or commentators with a primarily political

focus are not included. The name of the celebrity may be embedded in a longer hashtag referring to some event or fan group that involves the celebrity. Note that
many music groups have unusual names; these still count under the “celebrity” category.

Games Names of computer, video, MMORPG, or twitter-based games, as well as groups devoted to such games.
Idiom A tag representing a conversational theme on twitter, consisting of a concatenation of at least two common words. The concatenation can’t include names of

people or places, and the full phrase can’t be a proper noun in itself (e.g. a title of a song/movie/organization). Names of days are allowed in the concatenation,
because of the the Twitter convention of forming hashtags involving names of days (e.g. MusicMonday). Abbreviations are allowed only if the full form also
appears as a top hashtag (so this rules out hashtags including omg, wtf, lol, nsfw).

Movies/TV Names of movies or TV shows, movie or TV studios, events involving a particular movie or TV show, or names of performers who have a movie or TV show
specifically based around them. Names of people who have simply appeared on TV or in a movie do not count.

Music Names of songs, albums, groups, movies or TV shows based around music, technology designed for playing music, or events involving any of these. Note that
many music groups have unusual names; these still count under the “music” category.

Political A hashtag that in your opinion often refers to a politically controversial topic. This can include a political figure, a political commentator, a political party or
movement, a group on twitter devoted to discussing a political cause, a location in the world that is the subject of controversial political discussion, or a topic or
issue that is the subject of controversial political discussion. Note that this can include political hashtags oriented around countries other than the U.S.

Sports Names of sports teams, leagues, athletes, particular sports or sporting events, fan groups devoted to sports, or references to news items specifically involving
sports.

Technology Names of Web sites, applications, devices, or events specifically involving any of these.

Table 1: Definitions of categories used for annotation.
Category Examples Category Examples
Celebrity mj, brazilwantsjb, regis, iwantpeterfacinelli Music thisiswar, mj, musicmonday, pandora
Games mafiawars, spymaster, mw2, zyngapirates Political tcot, glennbeck, obama, hcr
Idiom cantlivewithout, dontyouhate, musicmonday Sports golf, yankees, nhl, cricket
Movies/TV lost, glennbeck, bones, newmoon Technology digg, iphone, jquery, photoshop

Table 2: A small set of examples of members in each category.

they noted errors and arrived at a majority judgment on each an-
notation. Second, the authors solicited a group of independent an-
notators, and took the majority among their judgments. Annotaters
were provided with the category definitions, and for each hashtag
were provided with the tag’s definitions (when present) from the
Web resources Wthashtag and Tagalus, as well as links to Google
and Twitter search results on the tag. Finally, since the definition of
the “idiom” category is purely syntactic, we did not use annotators
for this task, but only for the other seven categories.

Clearly even with this level of specificity, involving both hu-
man annotation and Web-based definitional resources, there are
ultimately subjective judgments involved in category assignments.
However, given the goal of understanding variations in hashtag be-
havior across topical categories, at some point in the process a set of
judgments of this form is unavoidable. What we find is the results
are robust in the presence of these judgments: the level of agree-
ment among annotators was uniformly high, and the plots presented
in the subsequent sections show essentially identical behavior re-
gardless of whether they are based on the authors’ annotations, the
independent volunteers’ annotations, or the intersection of the two.
To provide the reader with some intuition for the kinds of hash-
tags that fit each category, we present a handful of illustrative ex-
amples in Table 2, drawn from the much larger full membership
in each category. The full category memberships can be seen at
http://www.cam.cornell.edu/∼dromero/top500ht.

3. EXPOSURE CURVES

Basic definitions. In order to investigate the mechanisms by which
hashtag usage spreads among Twitter users, we begin by reviewing
two ways of measuring the impact that exposure to others has in an
individual’s’ choice to adopt a new behavior (in this case, using a
hashtag) [7]. We say that a user is k−exposed to hashtag h if he
has not used h, but has edges to k other users who have used h in
the past. Given a user u that is k−exposed to h we would like to
estimate the probability that uwill use h in the future. Here are two
basic ways of doing this.

Ordinal time estimate. Assume that user u is k−exposed to
some hashtag h. We will estimate the probability that u will use
h before becoming (k + 1)−exposed. Let E(k) be the number of
users who were k−exposed to h at some time, and let I(k) be the
number of users that were k−exposed and used h before becoming
(k + 1)−exposed. We then conclude that the probability of using
the hashtag h while being k−exposed to h is p(k) = I(k)

E(k)
.

Snapshot estimate. Given a time interval T = (t1, t2), assume
that a user u is k−exposed to some hashtag h at time t = t1.
We will estimate the probability that u will use h sometime during
time interval T . We let E(k) be the number of users who were
k−exposed to h at time t = t1, and let I(k) be the number of users
who were k−exposed to h at time t = t1 and used h sometime be-
fore t = t2. We then conclude that p(k) = I(k)

E(k)
is the probability

of using h before time t = t2, conditioned on being k−exposed
to h at time t = t1. We will refer to p(k) as an exposure curve;
we will also informally refer to it as an influence curve, although
it is being used only for prediction, not necessarily to infer causal
influence.

The ordinal time approach requires more detailed data than the
snapshot method. Since our data are detailed enough that we are
able to generate the ordinal time estimate, we only present the re-
sults based on the ordinal time approach; however, we have con-
firmed that the conclusions hold regardless of which approached is
followed. This is not surprising since it has been argued that suf-
ficiently many snapshot estimates contain enough information to
infer the the ordinal time estimate [7].

Comparison of Hashtag Categories: Persistence and Stickiness.
We calculated ordinal time estimates P (k) for each one of the 500
hashtags we consider. For each point on each curve we calculate the
95% Binomial proportion confidence interval. We observed some
qualitative differences between the curves corresponding to differ-
ent hashtags. In particular, we noticed that some curves increased
dramatically initially as k increased but then started to decrease
relatively fast, while other curves increased at a much slower rate
initially but then saturated or decreased at a much slower rate. As
an example, Figure 3 shows the influence curves for the hashtags
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Figure 2: F (P ) for the different types of hashtags.The black
dots are the average F (P ) among all hashtags, the red x is the
average for the specific category, and the green dots indicate the
90% expected interval where the average for the specific set of
hashtags would be if the set was chosen at random. Each point
is the average of a set of at least 10 hashtags

#cantlivewithout and #hcr. We also noticed that some curves had
much higher maximum values than others.4

In this discussion, we are basing differences among hashtags on
different structural properties of their influence curves. In order to
make these distinctions more precise we use the following mea-
sures.

First, we formalize a notion of “persistence” for an influence
curve, capturing how rapidly it decays. Formally, given a func-
tion P : [0,K] → [0, 1] we let R(P ) = K max

k∈[0,K]
{P (k)} be the

area of the rectangle with length K and height max
k∈[0,K]

{P (k)}. We

let A(P ) be the area under the curve P assuming the point P (k) is
connected to the point P (k + 1) by a straight line. Finally, we let

F (P ) =
A(P )

R(P )
be the persistence parameter.

When an influence curve P initially increases rapidly and then
decreases, it will have a smaller value of F (P ) than a curve P̃
which increases slowly and the saturates. Similarly, an influence
curve P that slowly increases monotonically will have a smaller
value of F (P ) than a curve P̃ that initially increases rapidly and
then saturates. Hence the measure F captures some differences
in the shapes of the influence curves. In particular, applying this
measure to an influence curve would tell us something about its
persistence; the higher the value of F (P ), the more persistent P is.

Second, given an influence curve P : [0,K] → [0, 1] we let
M(P ) = max

k∈[0,K]
{P (k)} be the stickiness parameter, which gives

us a sense for how large the probability of usage can be for a par-
ticular hashtag based on the most effective exposure.

4As k gets larger the amount of data used to calculate P (k) de-
creases, making the error intervals very large and the curve very
noisy. In order to take this into account we only defined P (k) when
the relative error was less than some value θ. Throughout the study
we checked that the results held for different values of θ.
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Figure 3: Sample exposure curves for hashtags #cantlivewith-
out (blue) and #hcr (red).

We are interested in finding differences between the spreading
mechanism of different topics on Twitter. We start by finding out
if hashtags corresponding to different topics have influence curves
with different shapes. We found significant differences in the val-
ues of F (P ) for different topics. Figure 2 shows the average F (P )
for the different categories, compared to a baseline in which we
draw a set of categories of the same size uniformly at random from
the full collection of 500. We see that politics and sports have an
average value of F (P ) which is significantly higher than expected
by chance, while for Idioms and Music it is lower. This suggests
that the mechanism that controls the spread of hashtags related to
sports or politics tends to be more persistent than average; repeated
exposures to users who use these hashtags affects the probability
that a person will eventually use the hashtag more positively than
average. On the other hand, for Idioms and Music, the effect of re-
peated exposures falls off more quickly, relative to the peak, com-
pared to average.

Figure 4 shows the point-wise average of the influence curves for
each one of the categories. Here we can see some of the differences
in persistence and stickiness the curves have. For example, the
stickiness of the topics Music, Celebrity, Idioms, and politics tends
to be higher that average since the average influence curve for those
categories tends to be higher than the average influence curve for
all hashtags, while that of Technology, Movies, and Sports tends to
be lower than average. On the other hand, these plots give us more
intuition on why we found that politics and Sports have a high per-
sistence while for Idioms and Music it is low. In the case of Politics,
we see that the red curve starts off just below the green curve (the
upper error bar) and as k increases, the red curve increases enough
to be above the green. Similarly, the red curve for Sports starts be-
low the blue curve and it ends above it. In the case of Idioms, the
red curve initially increases rapidly but then it it drops below the
blue curve. Similarly, the red curve for Music is always very high
and above all the other curves, but it drops faster than the other
curves at the end.

Approximating Curves via Stickiness and Persistence. When
we compare curves based on their stickiness and persistence, it
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(a) Celebrity
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(b) Sports
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(c) Music
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(d) Technology
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(e) Idioms
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(f) Political
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(g) Movies
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(h) Games

Figure 4: Point-wise average influence curves. The blue line is the average of all the influence curves, the red line is the average for
the set of hashtags of the particular topic, and the green lines indicate the interval where the red line is expected to be if the hashtags
were chosen at random.
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Figure 5: Example of the approximation of an influence curve.
The red curve is the influence curve for the hashtag #pickone,
the green curves indicate the 95% binomial confidence interval,
and the blue curve is the approximation.

is important to ask whether these are indeed an adequate pair of
parameters for discussing the curves’ overall “shapes.” We now es-
tablish that they are, in the following sense: we show that these two
parameters capture enough information about the influence curves
that we can approximate the curves reasonably well given just these
two parameters. Assume that for some curve P we are given F (P )
andM(P ). We will also assume that we know the maximum value
of k = K for which P (k) is defined. Then we will construct an
approximation curve P̃ in the following way:

1. Let P̃ (0) = 0

2. Let P̃ (2) = M(P )

3. Now we will let P̃ (K) be such that F (P̃ ) = F (P ). This
value turns out to be P̃ (K) = M(P )∗K∗(2∗F (P )−1)

K−2

4. Finally, we will make P̃ be piecewise linear with one line
connecting the points (0, 0) and (2,M(P )), and another line
connecting the points (2,M(P )) and (K, M(P )∗K∗(2∗F (P )−1)

K−2
).

Figure 5 shows an example of an approximation for a particular
influence curve. In order to test the quality of the approximation P̃
we define the approximation error between P̃ and P as the mean
absolute error

E(P, P̃ ) =
1

K

K∑
k=0

∣∣∣(P (k)− P̃ (k))
∣∣∣

and compare it with the mean absolute of the error E(P ) obtained
from the 95% confidence intervals around each pointP (k). The av-
erage approximation error among all the influence curves is 0.0056
and the average error of based on the confidence intervals is 0.0050.
The approximation error is slightly smaller, which means that out
approximation is, on average, within the 95% confidence interval
from the actual influence curve. This suggests the information con-
tained in the stickiness and persistence parameters are enough to

Type Mdn. Mentions Mdn. Users Mdn. Ment./User
All HTS 93,056 15,418 6.59
Political 132,180 13,739 10.17
Sports 98,234 11,329 9.97
Idioms 99,317 26,319 3.54
Movies 90,425 15,957 6.57

Celebrity 87,653 5,351 17.68
Technology 90,462 24,648 5.08

Games 123,508 15,325 6.61
Music 87,985 7,976 10.39

Table 3: Median values for number of mentions, number of
users, and number of mentions per user for different types of
hashtags

accurately approximate the influence curves and gives more mean-
ing to the approach of comparing the curves by comparing these
two parameters.

Frequency of Hashtag Usage. We have observed that different
topics have differences in their spreading mechanisms. We also
found that they differed in other ways. For example, we see some
variation in the number of mentions and the number of users of
each category. Table 3 shows the different median values for num-
ber of mentions, number of users, and number of mentions per user
for different types of hashtags. We see that while Idioms and Tech-
nology hashtags are used by many users compared to others, each
user only uses the hashtag a few times and hence the total number
of mentions of the these categories is not much higher than oth-
ers. On the other hand, only relatively few people used Political
and Games hashtags, but each one of them used them many times,
making them the most mentioned categories. In the case of games,
a contributing factor is that some of users of game hashtags allow
external websites to post on their Twitter account every time they
accomplish something in the game, which tends to happen very of-
ten. It is not clear that there is a correspondingly simple explanation
for the large number of mentions per user for political hashtags, but
one can certainly conjecture that it may reflect something about the
intensity with which these topics are discussed by the users who
engage in such discussions; this is an interesting issue to explore
further.

4. THE STRUCTURE OF INITIAL SETS
The spread of a given piece of information is affected by the dif-

fusion mechanism controlled by the influence curves discussed in
the previous section, but it may also be affected by the structure
of the network relative to the users of the hashtag. To explore this
further, we looked at the subgraph Gm induced by the first m peo-
ple who used a given hashtag. We found that there are important
differences in the structure of those graphs.

In particular, we consider differences in the structures of the sub-
graphs Gm across different categories. For each graph Gm, across
all hashtags and a sequence of values of m, we compute several
structural parameters. First, we compute the average degree of the
nodes and the number of triangles in the graph. Then, we defined
the border of Gm to be the set of all nodes not in Gm who have at
least one edge to a node in Gm, and we define the entering degree
of a node in the border to be the number of neighbors it has in Gm.
We consider the size of the border and the average entering degree
of nodes in the border.

Looking across all categories, we find that political hashtags are



Type I II III IV
All HTS 1.41 384 1.24 13425
Political 2.55 935 1.41 12879

Upper Error Bar 1.82 653 1.32 15838
Lower Error Bar 1.00 112 1.16 11016

Table 4: Comparison of graphs induced by the first 500 early
adopters of political hashtags and average hashtags. Column
definitions: I. Average degree, II. Average triangle count, III.
Average entering degree of the nodes in the border of the
graphs, IV. Average number of nodes in the border of the
graphs. The error bars indicate the 95% confidence interval
of the average value of a randomly selected set of hashtags of
the same size as Political.

the category in which the most significant structural differences
from the average occur. Table 4 shows the averages for political
hashtags compared to the average for all hashtags, using the sub-
graphs G500 on the first 500 users.5 In brief, the early adopters of
a political hashtag message with more people, creating more tri-
angles, and with a border of people who have more links on av-
erage into the early adopter set. The number of triangles, in fact,
is high even given the high average degree; clearly one should ex-
pect a larger number of triangles in a subgraph of larger average
degree, but in fact the triangle count for political hashtags is high
even when compared against a baseline consisting of non-political
hashtags with comparable average degrees. These large numbers of
edges and triangles are consistent with the predictions of complex
contagion, which argues that such structural properties are impor-
tant for the spread of controversial topics [6].

Tie Strength. There is an interesting further aspect to these struc-
tural results, obtained by looking at the strength of the ties within
these subgraphs. There are multiple ways of defining tie strength
from social media data [10], and here we consider two distinct ap-
proaches. One approach is to use the total number of @-messages
sent across the link as a numerical measure of strength. Alternately,
we can declare a link to be strong if and only if it is reciprocated
(i.e. declaring (X,Y ) to be strong if and only if (Y,X) is in the
subgraph as well, following a standard working notion of recipro-
cation as a proxy for tie strength in the sociology literature [14]).

Under both definitions, we find that the fraction of strong ties in
subgraphs Gm for political hashtags is in fact significantly lower
than the fraction of strong ties in subgraphs Gm for our set of
hashtags overall. However, since political subgraphs Gm contain
so many links relative to the typical Gm, we find that they have
a larger absolute number of strong ties. As noted in the intro-
duction, standard sociological theories suggest that we should see
many strong ties in subgraphs Gm for political topics, but the pic-
ture we obtain is more subtle in that the growth in strong ties comes
with an even more significant growth in weak ties. Understanding
these competing forces in the structural behavior of such subgraphs
is an interesting open question.

5. SIMULATIONS
We have observed that for some hashtags, such as those relating

to political subjects, users are particularly affected by multiple ex-
posures before using them. We also know that the subgraphs on

5The results are similar for Gm with a range of other values of
m 6= 500.

which political hashtags initially spread have high degrees and ex-
tensive clustering. To what extent do these aspects intrinsically go
together? Do these types of political hashtags spread effectively
because of the close-knit network of the initial users? Are politi-
cal subjects less likely to successfully spread on sparsely connected
initial sets?

In this section, we try to obtain some initial insight into these
questions through a simulation model — not only in the context
of political hashtags but also in the context of the other categories.
In particular, we develop a model that naturally complements the
process used to calculate the p(k) functions. We perform simula-
tions of this model using the measured p(k) functions and a varying
number of the first users who used each hashtag on the actual in-
fluence network. Additionally, we record the progression of the
cascade and track its spread through the network. By trying the
p(k) curve of a hashtag on the initial sets of other hashtags, and
by varying the size of the initial sets, we can gain insight into the
factors that lead to wide-spreading cascades.

5.1 The Simulated Model
We wish to simulate cascades using the measured p(k) curves,

the underlying network of users, and in particular the observed sub-
graphs Gm of initial adopters, In this discussion, and in motivating
the model, we refer to the moment at which a node adopts a hashtag
as its activation. We operationalize the model implicit in the defi-
nition of the function p(k), leading to the following natural simu-
lation process on a graph G = (V,E).

First, we activate all nodes in the starting set I , and mark them
all as newly active. In a general iteration t (starting with t = 0), we
will have a currently active set At and a subset Nt ⊆ At of newly
active nodes. (In the opening iteration, we have A0 = N0 = I .)
Newly active nodes have an opportunity to activate nodes u ∈ V −
At, with the probabilities of success on u determined by the p(k)
curve and the number of nodes in At −Nt who have already tried
and failed to activate u.

Thus, we consider each node u ∈ V − At that is a neighbor
of at least one node in Nt, and hence will experience at least one
activation attempt. Let kt(u) be the number of nodes in At − Nt

adjacent to u; these are the nodes that have already tried and failed
to activate u. Let ∆t(u) be the number of nodes in Nt adjacent
to u. Each of these neighbors in Nt will attempt to activate u
in sequence, and they will succeed with probabilities p(kt(u) +
1), p(kt(u) + 2), . . . , p(kt(u) + ∆t(u)), since these are the suc-
cess probabilities given the number of nodes that have already tried
and failed to activate u. At the end, we define Nt+1 to be the set
of nodes u that are newly activated by the attempts in this iteration,
and At+1 = At ∪Nt+1.

5.2 Simulation Results
We simulate how a cascade that spreads according to the p(k)

curve for some hashtag evolves when seeded with an initially active
user sets of other hashtags. In total, there are 250,000 (p(k), start
set) hashtag combinations we examine. We additionally vary the
size of the initially active set to be 100, 500, or 1,000 users. Since
we want to study how a hashtag blossoms from being used by a few
starting nodes to a large number of users, we must be careful about
how we select the size of our starting sets. We believe that these ini-
tial set sizes capture the varying topology observed in Section 4 and
are not too large as to guarantee wide-spreading cascade. For 100
and 500 starting nodes we run five simulations on each (p(k), start
set) pair, and for 1,000 starting nodes we run only two simulations.

The simulation is instrumented at each iteration; we record the
size of the cascade, the number of nodes influenced by active users,



(a) Celebrity vs. random p(k) curves,
celebrity start sets

(b) Political vs. random start sets, political
p(k) curves.

(c) Idiom vs. random start sets, idiom p(k)
curves.

Figure 6: Validating Category Differences: The median cascade sizes for three different categories. In (a) we randomize over the
p(k) curves and show that celebrity p(k) curves don’t perform as well as random p(k) curves on celebrity start sets. Figures (b) and
(c) illustrate the strength of the starting sets for political and idiom hashtags compared to random start sets. All starting sets consist
of 500 users.

and the number of inactive users influenced by active users. Fur-
thermore, each simulation runs for at most 25 iterations. We found
that this number of iterations was large enough to observe interest-
ing variation in cascade sizes yet still be efficiently simulated.

We calculate the mean and the 5th, 10th, ..., 95th percentiles of
cascade sizes after each iteration. For each category, we measure
these twenty measures based on all of the simulations where the
p(k) hashtag and the starting set hashtag are both chosen from the
category. We then compare these measurements to the results when
a random set of hashtags is used to decide the p(k) curve, the start-
ing set, or both the p(k) curve and the starting set. The cardinality
of this random set is the same as the number of hashtags in the cat-
egory. We sample these random choices 10,000 times to estimate
the distribution of these measured features.

Using these samples, we test the measurements for statistical sig-
nificance. In particular, we look at how the ‘category’ cascades
(those in which both hashtag choices are from the category set)
compare to cascades in which the p(k) curve or starting set hash-
tages were chosen randomly. In all of the following figures, the red
line indicates the value of the measurements over the set of simu-
lations in which p(k) curve and the start set come from category
hashtags. The blue line is the average feature measurement over
the random choices, and the green lines specify two standard devi-
ations from the mean value. The cascade behavior of a category is
statistically significant with respect to one of the measured features
when most of the red curve lies outside of the region between the
two green curves.

We compare how the p(k) curves for a category perform on start
sets from the same category and on random start sets. We addition-
ally evaluate how random p(k) curves and category p(k) curves
perform on category start sets. In general, categories either per-
formed below or above the random sets in both of these measures.
Some particular observations are

• Celebrities and Games: Compared to random starting sets,
we find that start sets from these categories generate smaller
cascades when the p(k) curves are chosen from their respec-
tive categories. This difference is statistically significant.

• Political and Idioms: These categories’ p(k) curves and start
sets perform better than a random choice. This is especially
true for the smaller cascades (5 - 30th percentiles).

• Music: This category is interesting because the music p(k)

curves perform better than random p(k) curves on music
starting sets, music p(k) curves perform better on random
starting sets than on music starting sets, regardless of the
number of initially active users. This is the only category
in which the p(k) and start set ‘goodness’ differs.

• Movies, Sports, and Technology: These categories don’t ex-
hibit particularly strong over or underperformance compared
a random choice of p(k) hashtags and starting set hashtags.

6. CONCLUSION
By studying the ways in which an individual’s use of widely-

adopted Twitter hashtags depends on the usage patterns of their
network neighbors, we have found that hashtags of different types
and topics exhibit different mechanics of spread. These differences
can be analyzed in terms of the probabilities that users adopt a hash-
tag after repeated exposure to it, with variations occurring not just
in the absolute magnitudes of these probabilities but also in their
rate of decay. Some of the most significant differences in hashtag
adoption provide intriguing confirmation of sociological theories
developed in the off-line world. In particular, the adoption of polit-
ically controversial hashtags is especially affected by multiple re-
peated exposures, while such repeated exposures have a much less
important marginal effect on the adoption of conversational idioms.

This extension of information diffusion analysis, taking into ac-
count sources of variation across topics, opens up a variety of fur-
ther directions for investigation. First, the process of diffusion
is well-known to be governed both by influence and also by ho-
mophily — people who are linked tend to share attributes that pro-
mote similiarities in behavior. Recent work has investigated this
interplay of influence and homophily in the spreading of on-line
behaviors [2, 8, 3, 19]; It would be interesting to look at how this
varies across topics and categories of information as well — it is
plausible, for example, that the joint mention of a political hashtag
provides stronger evidence of user-to-user similarity than the anal-
ogous joint mention of hashtags on other topics, or that certain con-
versational idioms (those that are indicative of shared background)
are significantly better indicators of similarity than others. There
has also been work on the temporal patterns of information diffu-
sion — the rate over time at which different pieces of information
are adopted [9, 18, 21, 24, 30]. In this context there have been
comparisons between the temporal patterns of expected versus un-



expected information [9] and between different media such as news
sources and blogs [21]. Our analysis here suggests that a rich spec-
trum of differences may exist across topics as well.

Finally, we should emphasize one of our original points, that the
phenomena we are observing are clearly taking place in aggregate:
it is striking that, despite the many different styles in which people
use a medium like Twitter, sociological principles such as the com-
plex contagion of controversial topics can still be observed at the
population level. Ultimately, it will be interesting to pursue more
fine-grained analyses as well, understanding how patterns of varia-
tion at the level of individuals contribute to the overall effects that
we observe.
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