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Abstract

When users interact with one another on social media sites,
the volume and frequency of their communication can shift
over time, as their interaction is affected by a number of fac-
tors. In particular, if two users develop mutual relationships
to third parties, this can exert a complex effect on the level
of interaction between the two users – it has the potential
to strengthen their relationship, through processes related to
triadic closure, but it can also weaken their relationship, by
drawing their communication away from one another and to-
ward these newly formed connections.
We analyze the interplay of these competing forces and relate
the underlying issues to classical theories in sociology – the
theory of balance, the theory of exchange, and betweenness.
Our setting forms an intriguing testing ground for these two
theories, in that it provides a scenario in which their qualita-
tive predictions are largely at odds with one another.
In the course of our analysis, we also provide novel ap-
proaches for dealing with a common methodological problem
in studying ties on social media sites: the tremendous volatil-
ity of these ties over time makes it hard to compare one’s
results to simple baselines that assume static or stable ties,
and hence we must develop a set of more complex baselines
that takes this temporal behavior into account.

1 Introduction
In studying the interactions on a social media site, a basic
question is to understand what causes relationships among
users to be strengthened and what causes them to weaken.
This is an issue that is not well understood: there are mul-
tiple forces that govern the strengths of social ties and pull
in competing directions. It is an important problem to de-
sign methods of analysis for these systems that can be-
gin to separate out the effects of these different forces.
Existing work in on-line domains has approached this is-
sue by identifying dimensions that characterize the strength
of ties (Gilbert and Karahalios 2009), and by incorporat-
ing factors such as triadic and focal closure (Kossinets
and Watts 2006), similarity among individuals (Anagnos-
topoulos, Kumar, and Mahdian 2008; Crandall et al. 2008;
Aral, Muchnik, and Sundararajan 2009; Kossinets and Watts
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2009), and the role of positive and negative relationships
(Leskovec, Huttenlocher, and Kleinberg 2010).

Here we develop an analysis framework through which
we can use data from social media sites to begin isolating the
effects of three distinct social forces on the strengths of rela-
tionships: balance, exchange, and betweenness. We begin by
describing how these forces operate in a social media con-
text, which will also make clear the sense in which they can
produce opposite effects. For this discussion we will focus
on undirected links, in which relationships are symmetric.

Balance and Exchange. First, we consider the force of
balance. Suppose we have a user B who is friends with
users A and C. The principle of balance argues that if A
and C do not have a social tie, this absence introduces la-
tent strain into the B-A and B-C relationships, and this
strain can be alleviated if an A-C tie forms (Heider 1958;
Rapoport 1953). Hence, balance is a force that causes the
formation of an A-C tie to strengthen the B-A tie, when C
is also linked to B.1

Counterbalancing this is an equally natural force, which
is the principle of exchange (Emerson 1962; Willer 1999).
Let’s return to the user B who is friends with users A and
C. If A were to become friends with C, this provides A with
more social interaction options than she had previously. The
theory of exchange argues that this makes A less dependent
on B for social interaction, thereby weakening the B-A tie.

Figure 1 is a schematic diagram of the forces of balance
and exchange as they act on a set of three nodes. Our first set
of analyses studies the aggregate effect of these forces on the
communication patterns between Twitter users. For this, we
say that a tie between two Twitter users has formed when
they have each sent at least 3 @-messages to the other. 2 We

1One sees balance theory applied in two related contexts when
we consider scenarios such as this, when B has positive relations
with A and C. In one line of argument, the absence of an A-C
link produces stress that needs to be resolved. A related line of
argument considers situations in which there is in fact antagonism
between A and C, which produces even stronger forms of stress
(Cartwright and Harary 1956). Both of these situations point to the
same conclusions, and both fall under the principle of balance.

2@-messages are a basic Twitter mechanism in which one user
directs a tweet to another; since they are used between people who
know one another as well from users toward celebrities, we require
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Figure 1: The theories of balance and exchange postulate the
effect of A and C forming a relationship on the B-A and B-C
relationships.
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Figure 2: Outside influence: The A-B relationship is poten-
tially weakened not only by additional relationships within
the online social network, but also by activities that alto-
gether draw users away from the network.

examine ties between users in a large collection of public
tweets. We also consider scenarios, such as the one pictured
in Figure 1, in which a user B has ties to users A and C, and
look at cases in which an A-C tie does or does not form.

Decaying Relationships and Outside Opportunities.
We find first of all that the formation of an A-C link in our
Twitter data makes it significantly more likely that the A-
B tie will persist (as measured by the generation of future
messages from A to B). At one level, this points to the dom-
inance of balance over exchange in this particular scenario;
however, as we investigate the effect of tie formation on tie
persistence more closely, a more subtle picture emerges. Go-
ing back to users A, B, and C, suppose that we consider the
effect on the A-B tie of A’s sending k messages to arbitrary
users other than B, for some relatively large value of k —
potentially even requiring these messages to go to users not
linked to B. Even in this case, these messages from A to
others lead to an increase in the persistence of the A-B tie.

This observation underscores the need to be careful in
reasoning about how the persistence of ties operates on a
social media site. One might suppose, via the principle of

multiple reciprocations before we consider the messaging to con-
stitute evidence of a tie.
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Betweenness: A is more dependent on 
B for information flow when there is an 

A-D tie rather than an A-C tie.

Figure 3: Betweenness postulates that A is more dependent
on B for information when A connects to nodes that are not
connected to B than when she connects to nodes connected
to B.

exchange, that the k messages from A to others divert A’s
attention from B, to the detriment of the A-B tie. But we
should step back and think about the full set of activities that
might draw A away from B. Interaction with other users on
Twitter is one source of such activities. However, there are
many activities completely outside Twitter that might draw
A’s attention away from B as well. Thus, abstractly, the pic-
ture from Figure 1 should be expanded to look more like the
larger picture in Figure 2.

In context of Figure 2, the principle of exchange is not
irrelevant to the discussion, but we are applying it too nar-
rowly if we view other Twitter users as the only sources of
outside opportunities for A in the A-B relationship. And
the point, then, is that k messages from A to many users
other than B still provide strong evidence that A is actively
involved in Twitter, rather than in other activities. This in-
creased involvement makes it easier for A’s Twitter activity
to “spill over” to the A-B tie.

In Section 4, we consider ways of capturing this spillover
effect, and propose a reconceptualization of exchange theory
in the particular context of social media to integrate the out-
side opportunities of a user A at both the “micro” level (to
other users on the site) and the “macro” level (to potentially
unobserved activities off the site).

This framework also suggests an important methodologi-
cal consideration that is underscored by our analyses. Social
media sites are domains in which the typical relationship ex-
ists in a state of rapid decay, since either user involved in the
relationship may begin to rapidly reduce their involvement
in the site, or leave it altogether and never return. Such is-
sues are much less of a constraint (even if they are present
at lower levels) in analyses of relationships in the physical
world — but in on-line settings, they need to be carefully
controlled for.

Balance and Betweenness. Given these considerations,
we explore a further set of questions about social forces and
relationships in which we control for A’s overall level of in-



volvement in the site. Specifically, consider again a user B
who has ties with users A and C. Now, let a fixed amount of
time pass, and consider two possible scenarios: (i) A forms
a tie with C, or (ii) A forms a tie with a user D who is not
connected with B. In which scenario is the A-B more per-
sistent? (See Figure 3.) Both (i) and (ii) provide evidence of
comparable involvement by A in the site, and so we must
look to the finer structure of the interaction pattern to decide
which has a more positive effect on the A-B tie.

As before, the principle of balance argues that the A-B
tie should be more strengthened in scenario (i). The prin-
ciple of exchange is a bit tricky to apply here, but we can
use the principle of betweenness instead to identify a natural
argument that says that scenario (ii) should be better for the
A-B link. The principle of betweenness is used, for example,
by Burt (1992) in his formulation of the theory of structural
holes.

The argument for betweenness is as follows. Twitter is an
environment in which access to information, and the flow of
information, is a crucial force in the shaping of users’ activ-
ities — consider, for example, the set of social and informa-
tional links that are activated whenever a piece of content is
extensively retweeted (repeated by users). As a result, when
there is no A-C link, user B plays an important brokerage
role in her relationship with A: B provides A with access to
information from C. If a direct A-C tie forms, this brokerage
role is sharply diminished; on the other hand, the role is not
as strongly diminished if A forms a tie with D. Thus, con-
siderations of betweenness and brokerage suggest that the
A-B might persist more strongly in scenario (ii), with the
formation of an A-D tie, rather than in scenario (i), with the
formation of an A-C tie.

In Section 3, we carry out a careful analysis of this trade-
off, finding significant evidence that the balance argument
is operating more strongly than the betweenness argument
in the setting of Twitter: the closing of the A-B-C triangle
(as in scenario (i)) has a more positive effect on the A-B
relationship than the formation of ties by A that leave it open
(as in scenario (ii)).

Persistence of Ties. Finally, in Section 5, we develop fur-
ther methodologies for analyzing the persistence of relation-
ships in social media domains such as Twitter, given the
rapid rate at which they decay over time. In particular, we
identify fundamental asymmetries in the way that relation-
ships ramp up in intensity compared to the way in which
they fall off after their peak level of activity, and we show
how the closing of triads in the vicinity of a tie can have
important effects on its persistence.

2 Data Set and Network Extraction
We have collected and processed a large corpus of data from
the Twitter social network. From August 2009 until January
2010, we crawled Twitter using their publicly available API.
Twitter provides access to only a limited history of tweets
through its search mechanism; however, because user iden-
tifiers have been assigned contiguously since an early point
in time, we simply crawled each user in a comprehensive

range. Due to limitations of the API, if a user has more
than 3,200 tweets we can only recover the last 3,200 tweets;
all messages of any user with fewer than this many tweets
are available. We collected over three-billion messages from
more than 60 million users during this crawl.

The primary analysis of this data is to extract all @-
messages and build a temporal network of ‘attention rela-
tionships.’ A directed edge exists from user A to B if A
sends at least k @-messages to B; the time this edge is
created, tD(A,B), is the time at which the kth @-message
is sent. In our analyses we use k = 3. There are multiple
ways of defining a network, and our definition is one way
of defining a proxy for the attention that a user A pays to
other users. The resulting network contains 8,509,140 non-
isolated nodes and 50,814,366 links.

From this directed, temporal network we extract an undi-
rected, temporal network of ties. An undirected edge be-
tween two users A and B is formed when A has sent at
least 3 @-messages to B and B has sent at least 3 @-
messages to A. The edge E = (A,B) has time-stamp equal
to t(A,B) = max{tD(A,B), tD(B,A)}, the later of the
times when the two directed edges were formed. This tie
network contains 20,492,393 ties between 3,701,860 users,
and although fewer than half of the users remain in the tie
network, over 80% of attention relationships contribute to a
tie.

We define an open triad O as a graph of three nodes A, B,
and C containing the ties (A,B) and (B,C) The time-stamp
of the open triad is Ot = max{t(A,B), t(B,C)}, the time
at which the last of the two ties forms. Open triads O =
(A,B,C) in which the undirected (A,C) edge eventually
forms are said to close. We define an open triad that closes
d days after Ot (t(A,C) is d days after Ot) to be a d-closed
triad.

3 Balance Vs. Betweenness
We begin by considering the contrast between balance and
betweeness discussed in the introduction. We take an open
triad (A,B,C), and as in Figure 3, we compare the amount
of interaction from A to B after one of the following two
events takes place: (i) the A-C tie forms, or (ii) A forms a
tie with a user D who is not connected to B. Because we
have recorded not only the evolution of a triad (whether it
closed or not), but also the communication times, we can
control for factors such as the delay between triad formation
and the creation of the additional tie. Additionally, we will
control for A being ‘active’; we make sure that A was com-
municating when the triad formed, when the new tie forms,
and some time after the new tie formed. In this way, we will
not end up studying phenomena that arise primarily because
users are immediately leaving the site.

Representing the competing scenarios. In particular, we
consider the percentage of messages that A directs to B in
two comparison sets of triads designed to represent scenar-
ios (i) and (ii). First, we choose a value for d and consider
all d-closed triads; we also want to guarantee that A had a
certain minimum level of activity overall, so we require that



A sent between 200 and 1000 messages in total after the
open triad (A,B,C) was formed, and moreover that A sent
at least one message 1, d, and 2d days after the open triad
was created. This subset of d-closed triads with these condi-
tions ensuring A is sufficiently active forms our population
for scenario (i).

For scenario (ii), we want an open triad (A,B,C) where
A sends a message to a node not connected to B. Thus, for
each triad O′ = (A,B,C) that never closes, we look at all of
the nodes D that are not connected to B, and with which A
forms a tie after O′

t. We pick such a node D at random and
say that O′ is d-open, where d is the number of days after
O′

t that the A-D tie formed. As before, we also require that
A sent between 200 and 1000 messages after the open triad
(A,B,C) was formed, and that A sent at least one message
1, d, and 2d days after the open triad was created. This popu-
lation of d-open triads with these conditions on A forms our
population for scenario (ii).

For each population, we measure the percentage of A’s
communication that goes toward B, as a function of the time
since the formation of the open triad. As noted in the intro-
duction, relationships on social media sites have a default
tendency to decay, but by observing which scenario provides
a slower aggregate decay rate for the A-B tie, we can begin
to learn about the different effects of balance (scenario (i))
and betweenness (scenario (ii)).

Results. In Figure 4, we adopt this test with d chosen to be
1, 3, 5, and 10 days. Each plot shows the average percentage
of messages that A sent to node B as a function of the num-
ber of days after Ot. The red curve is based on the d-closed
triads, while the green curve is based on the d-open triads.

We observe first that for all choices of d, the red curve
decreases at a slower rate than the green curve. This indi-
cates that the A-B tie decays more slowly in the population
corresponding to scenario (i). But beyond this, the gap be-
tween the two curves is widening: the rate at which they de-
crease is separating. After day 100 (about three months after
the formation of A’s additional connection), the communi-
cation percentage for the open triads decreases at a notice-
ably faster rate. This suggests that closing the triad benefits
communication from A to B by slowing the inevitably de-
creasing amount of online interaction.

In interpreting these results as evidence for the effect of
balance, it is important to understand that the formation of
the A-C tie is not causing the extent of A-B interaction to
increase in an absolute sense, but rather for its rate of decay
to be slowed. In general, the effect of social forces on re-
lationships in our analysis is ubiquitously modulated by the
overall rate of link decay on Twitter.

4 Exchange Theory and Spill-Over Effects
In the previous section, we observed that in the triad
(A,B,C) the communication between A and B benefits in
the long run from the triad’s closing. At a more general level,
we will now ask what can be predicted about the A-B inter-
action from knowledge of how active A was with respect to
users other than B.
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(a) d = 1
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(b) d = 3

0 20 40 60 80 100 120 140 160 180 200
10−5

10−4

10−3

10−2

10−1

100

Days after formation of open triad

Pe
rc

en
ta

ge
 o

f m
es

sa
ge

s 
fro

m
 A

 to
 B

Student Version of MATLAB

(c) d = 5
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(d) d = 10

Figure 4: Percentage of message from A to B vs. the num-
ber of day after creation of open triad. The green curve is
based on the d-open triads and the red curve is based on the
d-closed triads. A must have sent from 200 to 1000 mes-
sages in total after day = 0 and A must have sent at least one
messages on days 1, d, and 2d.
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Figure 5: Number of messages A sends to everyone but B
vs. number of messages A sends to B, 3 days after the cre-
ation of the A-B edge.

Exchange theory posits that as A has more “outside op-
tions” provided by communication partners who are not B,
A will spend less time communicating with B. One hypothe-
sis, then, is that as A spends more time talking to her friends
who are not B, A’s communication with B will decrease.
Alternatively, we can consider a simple model based on the
schematic picture in Figure 2, where A first decides how
much time to spend on Twitter, and then divides that time
evenly between all of her friends on Twitter. According to
this model, the more time A spends talking to anyone on
Twitter, the more time she will spend talking to B as well.

We test these two predictions by plotting the number of
messages A sends to everyone but B vs. the number of mes-
sages that A sends to B for various points in time after the
creation of the A-B edge. The plots have the same general
shape up to several weeks after the creation of the edge. In
Figure 5, we present the plot for three days after the cre-
ation of the edge. The figure shows a pattern of monotonic
increase, which suggests that the second model is a better
approximation to the real outcome: the more A talks to any-
one on Twitter, the more she talks to B as well.

The Role of Balance in Spill-Over Effects. This analysis
makes precise the sense in which we think of A’s activity
toward users other than B as “spilling over” in a positive
way toward B. We now show that the principle of balance
can enhance this spill-over effect. To do this, we consider
the set-up above, but vary the number of A’s messages that
go to users with whom B also has ties.
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Figure 6: Percentage of messages that A sends to B as a
function of the percentage of A’s non-B messages that go
to friends of B. These messages take place 3 days after the
creation of the A-B edge.

In particular, Figure 6 depicts the following analysis. We
consider the messages sent by A to users other than B, and
ask what fraction of these messages go to users C with
whom B also has a tie. What Figure 6 shows is that the per-
centage of messages from A to B increases as the percent-
age of messages from A to B’s friends increases: in other
words, the spill-over in A’s activity toward B is accentuated
when A’s activity toward users other than B takes place with
friends of B.

There is a respect in which Figure 6 can be a bit subtle to
interpret, based on the fact that it aggregates many users A
of different activity levels. As a result, we show (in Figure
7) a related analysis in which the set-up is identical except
that we require A to have sent exactly 10 messages to users
other than B. We then ask: how many messages does A send
to B, as a function of the number (out of 10) of these non-
B messages that go to friends of B? Again we find that the
spill-over in A’s activity is enhanced when A’s non-B ac-
tivities include many friends of B. Indeed, we see in Figure
7 a striking super-linear relationship whereby the spill-over
effect ramps up very rapidly once most of A’s non-B com-
munication is directed at friends of B.

A Situation with Apparent Lack of Spill-Over. Thus far
we have not seen any situations in which A’s activity toward
users other than B has had any kind of negative effect on
the A-B tie. Here we identify the possibility of one such
situation, leaving the underlying mechanism for it as an open
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Figure 7: Number of messages A sends to friends of B vs.
number of messages A sends to B, five days after the cre-
ation of the A-B edge. Node A sent exactly 10 messages in
total to users other than B.

question.
The situation is the following. Figure 8 zooms in around

the days d and 2d (in this case 10 and 20) on the curves from
Figure 4. We observe that the green curve has jumps on days
10 and 20, while the red curve only has a jump on day 20.
The jumps can be explained by the fact that to construct the
curves we only take triads in which A sent messages on days
d and 2d and therefore there is an increased likelihood that a
fraction of those messages were sent to B. However, we do
not see such jumps on day d on the red curve even though
node A was active on that day in the d-closed triads as well
as the d-open triads. The only difference between the red
and the green curves is that on day d, A messaged a neigh-
bor of B in the red curve, but in the green curve A messaged
a node D, not connected to B. The lack of jump on day d
can be observed on all the plots of Figure 4. This suggests
that the communication from A to B is in some sense sup-
pressed on the day of the triad’s closure, and hence points
to a possible case in which A’s actions toward others are re-
ducing the level of activity on the A-B link. Understanding
the extent of this effect and the mechanism behind it is an
intriguing open question.

5 Basic Properties of Relationship Decay
Since much of our analysis involves the basic fact that in-
teractions on Twitter decay over time, making sustained ties
hard to maintain, we now explore the basic properties of re-
lationship decay in more detail.
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Figure 8: Zoom-in of figure 4(d). We observe jumps on the
green curve at days d and 2d and on the red curve at day 2d
but not on day d.

We begin with a simple question. If we observe an event
in which A communicates with B on day 0, what is the
probability that we will observe another such A-to-B com-
munication event on day d > 0? Figure 9 shows how this
probability decreases as a function of d: note that it starts
with a decay rate that is slower than exponential (though
also not a very close fit to a power law), and then straightens
out into an approximately exponential rate. We note that the
rate of decay is faster than for the curves in Figure 4, which
were based on d-open and d-closed triads. Hence, users A
involved in triads tend to maintain their communication with
users B more than the average. One possible interpretation
is that their involvement in triads is indicative of a higher
level of activity on Twitter overall, triggering the types of
spill-over effects that were the focus of the previous section.

The probability of seeing future communication based
on just a single observation is one extreme in this genre
of questions. At the other extreme, we can study the
dynamics of a strong relationship from one user to an-
other, in which many messages are sent. Specifically,
let’s consider a pair of users (A,B) for which A sends
B at least 100 messages total. We then investigate how
the amount of communication from A to B changes over
time. For each such (A,B) pair, we partition time into
bins of length one week and look for the week during
which A sent the most @-messages to B. This is the peak
of the communication. We define the function M as follows:
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Figure 9: Probability that A will send a message to B d days
after having sent her one
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Figure 10: Average function M for pairs (A,B) in which A
sent B at least 100 @-messages
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Figure 11: Average of log(M(n)) as a function of log(n)
where n > 0 (in blue) and as a function of log(−n) for
n < 0 (in red)
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Figure 12: Average of log(M(n)) as a function of log(n)
where n > 0 (in blue for unreciprocated links and green for
reciprocated ones) and as a function of log(−n) for n < 0
(in red for unreciprocated links and black for reciprocated
ones)

M(n) =

 Num @-mess during peak if n = 0
Num @-mess duringnth

week before the peak if n < 0
Num @-mess duringnth

week after the peak if n > 0

Figure 10 shows the average function M for pairs (A,B)
in which A sent B at least 100 @-messages. Figure 11 shows
the average of log(M(n)) as a function of log(n) where n >
0 (in blue) and as a function of log(−n) for n < 0 (in red).
The blue curve is above the red curve which suggests that
the communication between A and B tends to ramp up to
the peak faster than it decays from the peak.

We can refine this analysis a bit further as follows. When a
user A sends a large number of messages to a user B, there
are two possibilities: (i) it could be that B never send any
messages to A (perhaps because B is simply a celebrity that
A mentions on a regular basis); or (ii) it could be because A
and B are actually exchanging messages, suggesting a more
overtly social form of interaction. With this in mind, we can
consider the plot in Figure 10 broken down separately based
on whether the messages from A to B are reciprocated (with
B messaging A as well) or unreciprocated (with no B-to-A
messages). Figure 12 shows the results for these two cate-
gories: we find that the rates of ramp-up and decay do in
fact different between the two, with the curves for unrecipro-
cated links lying slightly above the corresponding curves for
reciprocated links. This suggests that the ramp-up and ramp-
down for reciprocated links is in fact slighly more abrupt
than it is in the unreciprocated case.

6 Conclusions and Future Work
There are many forces that affect the strength and longevity
of ties on social media sites, and it is a challenge to separate
these into their distinct effects. In this paper we have offered
a set of data analysis methodologies that lets us begin to iso-
late the effect of three such forces: balance, in which ties are
strengthened when they close triads; exchange, in which ties



are weakened when one end of the tie has other opportuni-
ties; and betweenness, in which ties are strengthened when
they serve as conduits for information.

Our analyses show the power of balance in the domain
we study, Twitter. It also shows that exchange theory should
be broadened to conceptually include off-site opportunities
for participants in a tie, reflecting the rapid rate at which ties
decay. We believe that the framework developed here can be
applied to social media settings quite broadly. In particular,
it could be used to analyze the differential rates and trajecto-
ries by which relationships grow and decay across different
domains, and more intriguingly, it could expose contrasting
relative extents to which balance, exchange, and between-
ness apply across domains. Ultimately, being able to charac-
terize different social applications through the different ways
in which these forces operate could provide a useful frame-
work for modeling and reasoning about the behavior of these
applications.
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