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Social network research has begun to take advantage of fine-grained communications regarding coordination,

decision-making, and knowledge sharing. These studies, however, have not generally analyzed how exter-

nal events are associated with a social network’s structure and communicative properties. Here, we study

how external events are associated with a network’s change in structure and communications. Analyzing a

complete dataset of millions of instant messages among the decision-makers with different roles in a large

hedge fund and their network of outside contacts, we investigate the link between price shocks, network

structure, and change in the affect and cognition of decision-makers embedded in the network. We also an-

alyze the communication dynamics among specialized teams in the organization. When price shocks occur

the communication network tends not to display structural changes associated with adaptiveness such as the

activation of weak ties to obtain novel information. Rather, the network “turtles up.” It displays a propensity

for higher clustering, strong tie interaction, and an intensification of insider vs. outsider and within-role vs.

between-role communication. Further, we find changes in network structure predict shifts in cognitive and
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affective processes, execution of new transactions, and local optimality of transactions better than prices,

revealing the important predictive relationship between network structure and collective behavior within a

social network.

CCS Concepts: • Information systems → Web log analysis; Social networks; Data mining; • Networks

→ Online social networks; • Human-centered computing → Collaborative and social computing

theory, concepts and paradigms; Collaborative and social computing devices;
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1 INTRODUCTION

The emergence of detailed, time-resolved data on large social networks makes it possible to study
their structure and dynamics in new ways. Work has identified stable network structures, commu-
nities, influentials in networks, information flows, networked teams (Easley and Kleinberg 2010;
Jackson 2010; Lazer et al. 2009; Newman 2010, 2003; Platt and Romero 2018), and the temporal
evolution of large social networks (Ahn et al. 2007; Chakrabarti and Faloutsos 2012; Ke and Ahn
2014; Kossinets et al. 2008; Kossinets and Watts 2006; Leskovec et al. 2007; Newman et al. 2011;
Peel and Clauset 2015; Saavedra et al. 2011; Viswanath et al. 2009; Weng et al. 2013).

Despite the richness of the available datasets and the computational techniques for analyzing
them, work has generally not focused on a crucial feature of dynamic behavior—how changes in
the social network’s structure are linked to external shocks. Little research thus far has exam-
ined how social networks operate in a reactive capacity, as they respond to such stimuli from
their broader environments. By external shocks we mean events that are extreme relative to av-
erage events, or unexpected (Gilbert 2005). Such questions are critical to understanding a social
network’s capacity to respond to uncertainty when the membership of the network remains essen-
tially fixed. The real-life conditions reflecting these dynamics are varied, including the response
of intelligence and law enforcement personnel to emergency situations such as terrorist attacks
(Butts et al. 2007), health professionals responding to outbreaks (Dutta and Rao 2015), organiza-
tions facing sudden competitive threats or “normal accidents” (Perrow 2011), or the sudden gov-
ernment censorship of popular websites (Zhang et al. 2017). The effect has been to leave a set of
basic questions largely unanswered. How does a network respond to external shocks? What can
shock-related responses reveal about adaptive collective behavior?

We address these questions in the context of an organization’s social network (Adamic and
Adar 2005; Brass et al. 2004; Diesner et al. 2005; Dodds et al. 2003; Kilduff and Brass 2010; Klimt
and Yang 2004; Uzzi 1996). We consider the complete instant-messaging corpus, including content,
among the decision-makers of a hedge fund and their outside contacts. The analysis of financial
investment behavior is of interest because of its criticality to the economy and society (Fenton-
O’Creevy et al. 2011; Gell-Mann and Lloyd 1996; Lo and Repin 2002; Malkiel and Fama 1970; Preis
et al. 2013; Saavedra et al. 2013).

We focus on a few central questions. First, we study the link between environmental changes—
encoded in the movement of the prices of specific stocks at particular points in time—and changes
in the network structure, specifically the subgraph consisting of instant messages about these par-
ticular stocks during the times in question. For financial services firms, price shocks can represent
threatening and stressful external stimuli. Experiments measuring the stress level of traders using
conductance technology show that price changes lead to involuntary and significant physiological
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changes indicative of stress. Shifts in prices cause traders to have increased heart rates and elec-
trodermal responses relative to control conditions (Lo and Repin 2002). Qualitative observations
of traders echo experimental results. In the industry, the VIX, a widely used measure of market
price volatility, is referred to as the “Fear Index” (Whaley 2000).

Following sociological theory, one expectation for the association between price shocks and
network change is that price shocks are associated with a propensity to activate connections that
improve access to novel and diverse information and manage risk (Burt 2009; Granovetter 1973).
In this case, it would be expected that actors in the network would rely relatively more on weak
ties, network outsiders, and relationships with low closure. Conversely, shocks may be associated
with reflective network structure and behavior (Staw et al. 1981). Following this view, expecta-
tions are that actors disproportionately favor contacts repeatedly seen in the past, in-group rather
than out-group relations and highly interconnected contacts. Our analysis supports the latter ex-
pectation. In the face of shocks, we find that networks exhibit high levels of clustering, out-group
communication, and strong ties.

Where our first question explores the link between external factors and network structure, our
second main question asks whether these changes to the network structure can yield additional
insight into the behavior of the organization—beyond what is provided by the external changes
themselves. Specifically, if we seek to predict how the organization will respond to a price change,
does knowing properties of the network structure improve the performance of the prediction even
if we already have access to the time series of stock prices?

We show that knowledge of the network provides strong improvements in prediction of collec-
tive behavior for both individual-level actions and firm-level actions. We evaluate individual-level
actions by analyzing the way traders express themselves in the collection of instant messages, us-
ing a standard set of linguistic measures. These measures show that when a stock’s price changes
significantly (in either the positive or negative direction), the messages associated with that stock
display increased emotion and cognitive complexity. While these changes can already be inferred
to a limited extent from the price changes alone, we are able to predict their direction and magni-
tude much more effectively when we incorporate network-level features into the prediction. We
find analogous effects in the context of firm-level actions, where we analyze the trading decision
employees make for the firm. We introduce a simple measure of local optimality in the trading
price and show that network features provide significantly improved performance in predicting
whether the firm will perform a locally optimal action. We find a similar pattern when we attempt
to predict whether trades that have not been observed for a number of days are suddenly traded.

Taken together, our findings suggest a key role for electronic communication networks in the
analysis of external shocks and events affecting an organization: The network displays a consis-
tent set of changes in response to these external events, emphasizing strong ties and clustered
structures; and knowledge of the network structure provides significant leverage in predicting the
organization’s collective behavior.

2 TURTLED-UP AND OPEN NETWORKS

Current frameworks suggest different conjectures for relating social network structure to external
risks. Networks could open up structurally, with actors tapping acquaintances who are most
likely to provide novel information and diverse perspectives on problem-solving (Burt 2009).
Experiments show that persons facing threatening job changes, for example, disproportionately
turn to their weak ties and reduced their triadic closure (Menon and Smith 2014; Smith et al. 2012),
broadening their options and access to novel job information (Granovetter 1973). Conversely,
external shocks could be associated with networks of highly clustered, frequent, and familiar

ACM Transactions on the Web, Vol. 13, No. 1, Article 6. Publication date: February 2019.



6:4 D. M. Romero et al.

Fig. 1. Structure of open (a) and turtled up (b) networks. Turtled up networks exhibit a propensity toward

strong ties over weak ties, high clustering, and insider vs. outsider links. Networks tend to turtle up on days

with large or unexpected stock price changes.

relationships (Coleman 1988; Granovetter 1985) that promote trustworthiness but narrow social
cognition (Coleman 1988; Ellis 2006; Granovetter 1973; Menon and Smith 2014).

These frameworks predict two vastly different network structures. In the context of the hedge
fund, we define two types of structures that represent each of the two conjectures: an open net-
work and a turtled-up network. We characterize turtled-up network structures as containing many
triangles of relationships (friends of friends linked to each other), a high proportion of strong ties
(high-frequency relationships), and a small fraction of edges that connect employees of the hedge
fund to outsiders. Open network structures are the opposite—they contain few triangles of rela-
tionships, have relatively high numbers of weak ties, and high volume of communication between
hedge fund employees and outsiders. Figure 1 illustrates key differences between closed or turtled
up networks and open networks.

While we have defined turtled-up and open networks using features that are directly relevant to
the setting we are studying (e.g., low volume of outside communication), we note that the concept
can be applied to other settings where a network of communication can be constructed. In the case
of the hedge fund, we could conveniently identify outsiders and measure their communication with
the inside of the firm as well as communication between actors that play different roles within the
firm. In other settings, it may be necessary to identify communities using community detection
techniques (Newman 2006) to measure the volume of communication across different groups, but
a similar characterizations of open and turtled-up structures can be made.

3 DATA

Our data include the complete instant-messaging communication history among the personnel
at a hedge fund from January 2010 to December 2011. According to the firm, instant-message is
the main way in which employees discuss day-to-day decision making around trading both inside
the firm and with outside contacts. The data consist of approximately 22 million instant messages
(IMs) sent by 8,646 people, of whom 184 are employees of the hedge fund, and the rest are out-
side contacts. There are three types of titles among the employees of the hedge fund: portfolio
manager (pm), trader, and analyst. Portfolio managers are in charge of overseeing investments,
developing trading strategies, and placing large orders of trades; traders are in change of execut-
ing orders made by pm’s and have some flexibility on the timing of the execution; and analysts
provide analytic support to both portfolio managers and traders. Our dataset contains 63 pm’s, 26
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traders, and 95 analysts. We use the full content of each message and unique person and time of
transmission identifiers to analyze the IMs. We know each trade completed at the firm, the stock
symbol involved, and date and time of execution. All transactions in our data were executed by the
fund’s employees, not algorithms. On average, 559 transactions were performed daily. We merged
the above data with public data on daily stock prices. All of our data analysis was consistent with
guidelines from the relevant Institutional Review Board.

4 MEASURES

4.1 Network

IMs define a network of information exchange where nodes are communicating actors and IMs
between actors define edges. Our primary interest is in the subgraphs of the larger network des-
ignated by mentions of particular stocks at particular points in time. For a stock symbol s and a
day d , we define an undirected graphGs,d as follows: For each IM between company insiders that
mentions stock symbol s on day d , we include the two participants of the IM as nodes in Gs,d ,
and we join them by an edge. We eliminate parallel edges, so that two nodes in Gs,d will have
at most one edge between them. Multiple messages between pairs were examined when relevant.
Gs,d thus consists of all employees who mentioned stock s on day d , with messages containing s
on day d forming the edges between these people.

We define an edge to be internal if both nodes are company insiders and border if one node is a
company outsider. All IMs include one company employee, because communication between com-
pany outsiders cannot be recorded. Our definition of Gs,d uses only internal edges; the analogous
construction using both internal and border edges results in a larger graphG+

s,d
that containsGs,d .

The notation and terminology used in the analysis for graph size and connectivity and quan-
tifications of turtled up or open networks is as follows. Let Ns,d and Es,d be the number of nodes
and edges respectively in Gs,d . We normalize relevant measures in relation to comparable quan-
tities in the data; in particular, for a function f (Gs,d ) that we compute on Gs,d , we will define
ν ( f (Gs,d )) to be the ratio of f (Gs,d ) to the average value of f (Gs ′,d ′ ) for all pairs (s ′,d ′) such
that Ns ′,d ′ = Ns,d and d ′ < d . This lets us discuss whether f (Gs,d ) is large or small relative to
other graphs from previous days with the same number of nodes. We can define the analogous
normalization based on the number of edges; we write ϵ ( f (Gs,d )) to denote the ratio of f (Gs,d )
to the average value of f (Gs ′,d ′ ) for all pairs (s ′,d ′) such that Es ′,d ′ = Es,d and d ′ < d . Further-
more, since some stocks tend to be more popular in traders’ conversations than others, we nor-
malize the number of nodes. We define N̄s,d as the ratio of Ns,d to the average values of Ns,d ′

for all d ′ < d . Since the earliest part of the dataset does not have sufficient history to have a
robust set of baseline graphs, we do not make measurements for the first 30 days of the study
period.

Beyond the number of nodes and edges, a basic quantity is connectivity—whether Gs,d is con-
nected or whether most nodes belong to few connected components. We write Ls,d for the fraction
of nodes in the largest connected component of Gs,d , and Ks,d for the minimum number of com-
ponents required to account for at least 90% of nodes in Gs,d .

A measure for capturing triangles of relationship is the clustering coefficient; formally the frac-
tion of pairs of a node’s neighbors that are connected by an edge. We define Cs,d as the average
clustering coefficient over all nodes in Gs,d . To capture strength of ties we use frequency of com-
munication, which is a relevant measure for the structure of a social network (De Choudhury et al.
2010). For each node x in Gs,d , we consider the set of all nodes y with whom x has participated in
any messages on daysd ′ < d , and we sort these nodesy in descending order by the number of such
messages they have participated in x . We defineUx,d,α as the highest α fraction of this sorted list:
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Table 1. Description of Network, Role Communication, and Price Change Features Used in the Study

Feature Notation Mean SD

Network Features

Nodes N̄s,d 1.76 1.02
Edges ν (Es,d ) 1.41 0.87

Frac. Large Con. Comp. ν (Ls,d ) 1.40 0.74
Num. Comp. for 90% of Nodes ν (Ks,d ) 1.36 0.63

Clustering Coeff. ν (Cs,d ) 1.30 7.74
Strength of Ties Ss,d,0.1 0.51 0.34

Ratio of Border Edges Os,d 0.86 0.26

Role Communication

Features

Ratio Analysts Ps,d,Analyis 0.22 0.27
Ratio Traders Ps,d,Trader 0.34 0.22

Ratio Portfolio Managers Ps,d,PM 0.44 0.21

Comm. Traders/Traders DCTrader, Trader
s,d

−0.11 0.13

Comm. Traders/Analysts DC
Trader, Analyst

s,d
−0.01 0.05

Comm. Traders/PMs DCTrader, PM
s,d

0.00 0.03

Comm. Analysts/Analysts DC
Analyst, Analyst

s,d
−0.05 0.11

Comm. Analysts/PMs DC
Analyst, PM

s,d
0.00 0.20

Comm. PMs/PMs DCPM, PM
s,d

−0.16 0.13

Comm. Different Roles DCR1�R2

s,d
0.25 0.29

Price Change Features Price Change (%) Δs,d 0.02 3.66
Absolute Price Change (%) |Δs,d | 2.08 3.01

the α fraction of x ’s communication partners from days prior to d , measured by communication
volume these are x ’s strongest edges. We quantify whether Gs,d favors strong or weak ties using
the measure Ss,d,α , the fraction of edges (x ,y) for which y ∈ Ux,d,α .1 To the extent that closed and
open structures are related to an actor’s reach for information across boundaries (Burt 2009), we
define the openness Os,d as the fraction of edges in G+

s,d
that are border edges.

In summary, we compute the following daily features, which we refer to as the network fea-

tures for the article: number of nodes, number of edges, fraction of nodes in the largest connected
component, minimum number of connected components required to account for 90% of the nodes,
average clustering Coefficient, fraction of strong ties, and openness. As described above, some of
these measured are normalized using baselines from graphs from previous days. Table 1 shows the
mean and standard deviation of these features.

4.2 Communication between Actors of Different Roles within the Firm

Our network measures describe the general structure of who talks to whom and the rates of inter-
nal and external communication. However, they do not describe how the volume of communica-
tion is distributed internally among employees with different roles. We expect that the role of the
employees who are active on a given day and the role of those they choose to communicate with
carries a signal about the dynamics of decision making within the firm. To capture this, we define
a set of features that describe communication between roles. First, to capture who is active on a
given day, we define Ps,d,R as the fraction of employees of role R who mention stock s on day d
out of all employees who mention stock s on day d .

1We use α = 0.1 for the analysis presented in this article, but other reasonably small values of α produce qualitatively

similar results.
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Next, we consider the flow of communication between employees of different roles in the hedge
fund. The intuition is that communication between two groups can signal a specific type of activity
in the trading dynamics of the firm. For example, communication between analysts and traders
could signal that analysts have found potential trading strategies or insight on how to execute
trading orders and are conveying this information to traders; communication among analysts can
signal that the firm is actively planning and developing strategies; and communication among
pm’s could signal that the firm is discussing high level decision-making outside of any particular
portfolio.

Given that we already measure the fraction of active employees and that this fraction can im-
pact the rate of inter role communication (e.g., more active analysts and more active traders would
naturally lead to more communication between analysis and traders), we must control for the com-
position of active employees when we measure the rate of communication between the different
subgroups. Thus, given a stock s and a day d , we compute the expected fraction of IMs between

employee roles R1 and R2, ECR1,R2

s,d
, assuming IMs are generated from a random sender to a random

receiver, while fixing the number of employees from each group. That is, ECR1,R2

s,d
= Ps,d,R1

Ps,d,R2
if

R1 � R2 and ECR1,R2

s,d
= 2Ps,d,R1

Ps,d,R2
if R1 = R2. We then compute the difference between the ac-

tual and the expected rate of communication between the groups—we let ACR1,R2

s,d
be the fraction

of IMS between employees with role R1 and R2 and let DCR1,R2

s,d
= ACR1,R2

s,d
− ECR1,R2

s,d
.

Finally, we define a similar measure as above, but we now measure the fraction of IMs between
employees of different roles, while controlling for the expected fraction given the number of active

employees of each role. We let DCR1�R2

s,d
be this measure.

In summary, our role communication features consist of the fraction active employees of each
role, the normalized fraction of communication between roles, and the normalized fraction of com-
munication between employees of different roles. Table 1 shows the mean and standard deviation
of these features.

4.3 Shocks

To define the extremeness and unexpectedness of price shocks, we defined for each stock s and
day d , as,d and bs,d to be the opening and closing prices respectively of stock s on day d . We define

Δs,d =
bs,d−as,d

as,d
as the proportional change in the price of s on day d .

Some price changes are disruptive—the price change magnitudes are greater than recent
changes, and therefore they can be characterized as unexpected. They intuitively correspond to
shocks (Gilbert 2005). We operationalize the notion of a “shock” as follows: a stock-day pair (s,d )
is an x-shock if |Δs,d | > x and |Δs,d ′ | ≤ x for d ′ = d − 3,d − 2,d − 1. That is, (s,d ) is an x-shock if
stock s’s price change on day d was higher than x , and its price change was lower than x on the
previous three days. We investigate how continuous values of Δs,d and discrete x-shocks relate to
the properties of Gd,s .

5 FINDINGS

5.1 Price Changes and Network Dynamics

We observe a substantial relationship between changes in stock price and changes in network
structure. Figure 2 shows how each network feature—clustering, tie strength, and the relative in-
tensity of insider to outsider contacts—changes with Δs,d . The horizontal axis of each figure shows
the percentage price change Δ. When Δ > 0 (Δ < 0): the vertical axis indicates the mean measure
for networksGs,d such that Δs,d ≥ Δ (Δs,d ≤ Δ). When Δ = 0, the vertical axis indicates the mean
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Fig. 2. Change in stock prices vs. network structure for networks with two or more nodes.

measure for all networks. Throughout the article, figures also include 95% confidence intervals.
Aggregating changes in network properties with respect to price changes over all stocks and days,
we observe that as price changes increase in intensity, the network exhibits a higher clustering
coefficient.2 Price changes are also related to increasing levels of tie strength.3 Border edges also
drop as a percentage of edges in the face of price changes. Note that the trends show in Figure 2
are clear as we move away from a change in price of 0% to about 5%. However, the error bars be-
come very large for changes price that are larger than 5%. Thus, the change in network structure
as prices change from 5% to 10% is far less clear. These findings reveal that decision-makers in the
network tend to turtle up their communication in the face of stress, rather than open up.

Changes in connectivity are also significant but substantively slight. The fraction of nodes in
the largest component increases slightly and the number of components needed to account for 90%
of the nodes decreases slightly with price changes. We also find a trend with respect to network
size—as the price changes increase, the number of nodes (N̄s,d ) and edges increases (ν (Es,d )). These
effects are reported for graphsGs,d with at least two nodes; all results are consistent if we restrict
to graphs containing a larger number of nodes. We note that changes in network structure are
symmetric with respect to the direction of the price change, which is curious in nature given that
one might expect that price increases and decreases would be associated with different structural
changes—an issue we address below when we examine the actual changes in actors’ cognition and
affect.

We further examined the results in Figure 2 by disaggregating the analysis on a stock-by-
stock and industry-by-industry basis subject to control variables. We run OLS regressions of the
form f (Gs,d ) = β0 |Δs,d | + β1 f (Gs,d−1) + β2 f (Gs,d−2) + β3V IX + α1D

1
s + · · · + αSD

S
s + rs,d , where

S is the number of stocks in our dataset. For each stock s ′ the indicator function Ds ′
s is defined as

follows:

Ds ′
s :=

{
1 : s = s ′

0 : s � s ′ .

Including this indicator function as an independent variable measures the association between the
change in stock prices, |Δs,d | and the network properties f (Gs,d ) on a stock-by-stock basis (i.e.,
fixed effects model (Bhargava et al. 1982)). We included fixed effect variables for day of the week
to control communication patterns explained by the day of the week (e.g., earning announcements
and quarterly reports typically are made on specific days for specific stocks); a variable measuring

2We observe consistent results when we measure clustering while controlling for nodes (ν (Cs,d )) and edges (ϵ (Cs,d )).
3Repeating the test with various values of α showed that the results are similar regardless of the choice of α .
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Table 2. Results Form OLS Regressions of the Form

f (Gs,d ) = β0 |Δs,d | + β1 f (Gs,d−1) + β2 f (Gs,d−2) + β3V IX + rs,d

Model 1 Model 2 Model 3 Model 4

Independent Variables f =Nodes f =Clustering f =Perc. border edges f =Strength of ties

Stock price change 0.0540∗∗∗ 0.1590∗∗∗ −0.0009∗∗∗ 0.0010∗∗∗

f -lag(-1) −0.0009∗∗∗ 0.0089∗∗∗ 0.1415∗∗∗ 0.0448∗∗∗

f -lag(-2) 0.0644∗∗∗ 0.0026 0.0959∗∗∗ 0.0270∗∗∗

VIX −0.0034∗∗∗ −0.0213∗∗∗ −0.0006∗∗∗ −0.0001

5 Day of week fixed effects Y Y Y Y

Stock fixed effects Y Y Y Y

Regressions include fixed effects at the stock and day of the week level. Each column represents a regression with f as the

dependent variable and the rows show the value and significance of the independent variable. Asterisks indicate coefficient

significance (***p value < 0.0001).

Table 3. Results Form OLS Regressions of the Form

f (Gs,d ) = β0 |Δs,d | + β1 f (Gs,d−1) + β2 f (Gs,d−2) + β3V IX + rs,d

Model 1 Model 2 Model 3 Model 4

Independent Variables f =Nodes f =Clustering f =Perc. border edges f =Strength of ties

Stock price change 0.0557∗∗∗ 0.1925∗∗∗ −0.0004∗∗∗ 0.0009∗∗∗

f -lag(-1) 0.2579∗∗∗ 0.0209∗∗∗ 0.2008∗∗∗ 0.0729∗∗∗

f -lag(-2) 0.1277∗∗∗ 0.0146∗∗∗ 0.1550∗∗∗ 0.0542∗∗∗

VIX −0.0038∗∗∗ −0.0230∗∗∗ −0.0006∗∗∗ −0.0001

5 Day of week fixed effects Y Y Y Y

Industry fixed effects Y Y Y Y

Regressions include fixed effects at the industry and day of the week level. Each column represents a regression with f

as the dependent variable and the rows show the value and significance of the independent variable. Asterisks indicate

coefficient significance (***p value < 0.0001).

the daily market wide volatility using the VIX index; and the lagged values f (Gs,d−1) and f (Gs,d−2)
to control for possible autocorrelation in the time series of network properties.

We run regressions with the described stock level fixed effects and an additional version where
we use a fixed effects model at the industry level instead of the stock level. Tables 2 and 3 show the
value and significance of each independent variable using fixed effects at the stock and industry
level, respectively. The results confirm the analyses presented in Figure 2. Changes in price are
associated with increases in network size, clustering, and strength of ties, and decreases in the
percentage of outside contacts. A post-test analysis for autocorrelation of the residuals was also
run. For each stock s , we ran a separate regression of the form f (Gs,d ) = β0 |Δs,d | + β1 f (Gs,d−1) +
β2 f (Gs,d−2) + rs,d . Based on the Durbin–Watson test (Durbin and Watson 1951), there was no
statistical evidence of positive or negative serial correlation in 99.2% and 99.9% of the stocks,
respectively.

The relationship between unexpected price changes and network structure further substantiate
the inference that social networks in the face of uncertainty, as measured here, exhibit a propensity
to turtle up. We compare the value of each feature of Gs,d when (s,d ) is an x-shock and when it
is not. Further, we measure the number of days a graph feature takes to return to its mean value
following a shock. Figure 3 shows the values of network features in graphs Gs,d on the day of an
x-shock (x = 5%, as defined above), and then on subsequent days until the feature approximately
returns to its average over all networks. The insets in Figure 3 compare network values on shock
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Fig. 3. Network structure on days with a x-shock and on the days following a an x-shock. Insets compare

network properties on shock and non-shock days. x = 5% was used to define x-shocks.

and non-shock days. We find that all features are significantly different when there are shocks, and
the direction of the differences mirror the previous Figure 2. The same patterns arise when different
values of x are used. Our analysis of network recovery indicates that most network properties
return to their average value one or two days after the shock, suggesting that normalization in
relation to these shocks is relatively fast acting.

These results suggest that social networks in the face of stress broadly exhibit features associated
with turtling up rather than opening up. Social networks become more intensely interconnected
among third parties, rely more on information from strong rather than weak ties, and dispropor-
tionately attend to organizational insiders.
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Fig. 4. Percentage of words reflecting affective and cognitive processed by sender’s role.

Fig. 5. Price changes vs. percentage of active employees by role.

5.2 Price Changes and Communication between Actors

of Different Roles within the Firm

We now explore the differences in communication patterns across employees of different roles.
We begin by comparing the type of language used by each employee type. To infer affect and
cognition of the actors in our network, we use the Linguistic Inquiry and Word Count (LIWC)
dictionary, which identifies words in the content of communications (i.e., instant messages) that
reflect affective and cognitive states.4 Affect includes positive emotion, negative emotion, anxiety,
anger, and sadness. Cognition includes insight, causation, discrepancy, tentative, certainty, inhibi-
tion, inclusive, and exclusive. the LIWC dictionary is well validated and regularly used (Coviello
et al. 2014; Kramer et al. 2014; Romero et al. 2015).

Figure 4(a) and (b) shows the percentage of words related to cognitive and affective processes
used by employees of each role. We observe that there are significant differences—portfolio man-
agers exhibit the highest rate of cognitive language while analysts exhibit the highest rate of af-
fective language. Traders use cognitive and affective language at the lowest rates.

Given the observed differences in language between employees of different roles, which suggest
that they serve different functions in the social dynamics of the firm, we now investigate the
participation rate of employees of each role in IM communication when stocks change in price.

Figure 5 shows Ps,d,R as function of the change in price of stock s on day d . The x-axis shows
the relative price change Δ. In Figure 5(a), when Δ > 0 (Δ < 0) the y-axis indicates the fraction
of users who mentioned s on day d who are portfolio managers such that Δs,d ≥ Δ (Δs,d ≤ Δ).
Figure 5(b) and (c) show the corresponding plots for traders and analysts, respectively.

4See http://www.liwc.net for more information on LIWC 2007.
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Fig. 6. Price changes vs. fraction of active employee pairs by role controlling for expected fraction.

We observe a very clear trend. When the price of a stock s changes, regardless of direction, there
is an increase in the fraction of analysts and a decrease in the fraction of traders who mention s .
The fraction of pm’s who mention s does not appear to depend significantly on the extent of the
price change. If we think of the role of traders as actors in the firm who execute trading orders, then
analysts help traders and pm’s with planning and strategy, and pm’s oversee and manage the full
decision-making pipeline, then these findings are consistent with the following. When price shocks
occur, there is a larger emphasis on planning, represented by the increased participation of analysts,
and a reduced emphasis on acting, represented by the decreased participation of traders. When
price changes are small, we observe the opposite effect. Portfolio managers are expected to be
involved in both acting and planning, and we do not see a significant change in their participation
with price shocks. This finding is also consistent with the increase in cognitive language when
price changes occur, which we will discuss in Section 5.3. An increase in cognitive language and
participation of analysts in IM communication suggests that the firm is emphasizing planning
when faced with large changes in stock prices.

We now turn to the volume of inter-role communication. Figure 6 shows how DCR1,R2

s,d
changes

with price changes in s for all pairs of employee roles. The x-axis shows the relative price change

Δ. When Δ > 0 (Δ < 0) the y-axis shows DCR1,R2

s,d
such that Δs,d ≥ Δ (Δs,d ≤ Δ). We observe some

interesting patterns. There is clearly a sharp increase in communication between traders when
prices change (regardless of direction) and an increase in pm communication when prices go up
(Figure 6(b) and (a)). There is a also a slight, but observable, increase in analyst communication
when prices go up (Figure 6(c)). Furthermore, communication between pm’s and traders and be-
tween analysts and traders decreases when prices change in both direction (Figure 6(d) and (f)).
Finally, there is no significant change in communication between analysts and pm’s with price
changes (Figure 6(e)).

These patterns suggest an interesting trend—prices appear to generate a surge in communica-

tion between employees with the same role. Figure 7 shows DCR1�R2

s,d
as a function of the change in

price of s on day d . The resulting trend confirms that price changes result in an overall increased
rate of communication between employees of with the same role.
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Fig. 7. Price changes vs. percentage of active employee pairs with different role controlling for expected

fraction.

Taking this finding together with the results in previous sections, we can interpret it as another
way in which the firm turtles up. Not only do we observe an increased rate of communication with
internal members of the firm, strong ties, and people with high overlap in neighbors, but we also
observe an increased rate of communication within groups—that is, between people of the same
role—and a corresponding reduction in communication between people with different roles.

5.3 Cognitive and Affective Content

In the previous section, we identified changes on network structure that result from changes in
the stock market. Given this observation, it is important to know whether network structure has
an impact on other activities of the firm. To explore this question, we set up prediction tasks to
compare the predictive power of changes in the stock market and the structure of the communi-
cation network on various activities of the firm. Our goal is to assess whether network structure
impacts these activities above and beyond what we can already predict purely from changes in the
stock market.

We begin by considering the language used in the messages exchanged by the employees of
the firm. Language can often signal a person’s psychological and emotional states (Tausczik and
Pennebaker 2010). In the setting of a hedge fund, congnition and affect are particularly relevant
as they are known to shape decision making (Agarwal et al. 2012; Kahneman 2011; Tetlock 2007).
If changes in network structure are associated with actual changes in behavior, then changes in
network structure should predict changes in actors’ cognition and affect.

Before incorporating the role of network features, we investigate the relationship between stock
prices and IM content by measuring how the usage of LIWC categories varies with changes in the
stock prices. In particular, research holds that price changes are stressful for the employees of the
firm from a cognitive and emotional perspective (Lo and Repin 2002). For each instant message
among insiders, we computed the percentage of words in each LIWC category. Formally, given a
stock-day pair (s,d ) and the IMs that mention s on day d , we test whether the percentage of LIWC
words in the IMs varies with Δs,d . The x-axis in Figures 8 and 9 show the relative price change
Δ. When Δ > 0 (Δ < 0) the y-axis indicates the mean percentage of words in each LIWC category
in IMs mentioning s on day d such that Δs,d ≥ Δ (Δs,d ≤ Δ). When Δ = 0, the y-axis indicates the
mean value for all IMs.

We find that price changes are associated with expected changes in cognition and affect.
Figure 8(a) shows that as price changes intensify, either upward or downward, decision-
makers’ communications express higher levels of cognitive processes—presumably because they
face greater risk and complexity in their judgments. Figure 8(b)–(i) shows how the different
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Fig. 8. Price changes vs. percentage change in words reflecting various cognitive processes.

subcategories of cognitive processes change with price. The general trend is that the change in
cognitive processes is symmetric in the direction of the price change. This symmetric pattern is
consistent with the structural changes in Figure 2.

By contrast, affect expressed during ups and downs in price are asymmetric. Figure 9(a) shows
that expressed affect surrounding a stock during its price changes differ depending on whether
prices rise or fall. Figure 9(b)–(f) shows the change in the affective subcategories with changes
in prices. Words related to positive emotions are used more when stock prices rise while words
related to negative emotions, anger, anxiety, and sadness are used more often when stock prices
drop. One explanation of this is that while funds can make as much money when stock prices fall
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Fig. 9. Price changes vs. percentage change in words reflecting various affective processes.

as when they rise by selling short, more negative affect is expected when prices drop, because
falling prices generally sound alarms among retail investors who put their capital in the hands of
hedge fund decision-makers and take money out of the market when stock prices fall.

If message content varies with price changes, then does network structure further predict the
psychology of traders?

To address this question, we formulate the following prediction task. For each stock s and each
LIWC category C , let Cs be the fraction of all IMs containing stock symbol s that include a word
from category C . For each day d , let Cs,d be the fraction of all IMs containing stock symbol s on
day d that include a word from category C . We say that the pair (s,d ) conforms to category C if
Cs,d > Cs —in other words, if words from category C are used at a higher rate on day d than is
typical for stock s .

We use binary classifiers to predict whether each pair (s,d ) conforms to each of the cognitive
and emotional LIWC categories using the properties of the network and the stock price changes as
predictors. We run the prediction test using three feature sets: the network features (as described
in Section 3.1), price change features (the percent change in price of stock s on day d , Δs,d , and its
absolute value, |Δs,d |), and the two sets of features together. Each set of features includes lagged
values for 3 days before day d . In this analysis, we leave out the role communication features
as predictors as we do not expect these variables to be related to linguistic patterns. To test the
accuracy of the classifiers, we split time into 100-day bins, using each bin as a test set and all the
previous bins as training data. We balance the testing and training data by including all positive
examples and selecting a random sample of negative examples of the same size as the set of control
cases. Table 4 shows the number of cases in each class before being balanced. We use seven binary
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Table 4. Number of Positive and Negative Examples of Pairs

(s,d ) That Conform to Each LIWC Category

Category Num. Positive Num. Negative

Affective processes 27,229 65,704
Anger 3,047 89,886

Anxiety 1,570 91,363
Causation 14,794 78,139
Certainty 13,113 79,820

Cognitive processes 50,088 42,845
Discrepancy 19,281 73,652

Exclusive 27,383 65,550
Inclusive 36,033 56,900
Inhibition 7,556 85,377

Insight 19,663 73,270
Negative emotion 11,478 81,455
Positive emotions 23,551 69,382

Sadness 4,531 88,402
Tentative 27,784 65,149

Fig. 10. Prediction accuracy of logistic regression classifier for LIWC categories using network features, price

change features, and all features combined. Category key: Affective processes (A), Anger (B), Anxiety (C),

Causation (D), Certainty (E), Cognitive processes (F), Discrepancy (G), Exclusive (H), Inclusive (I), Inhibition

(J), Insight (K), Negative emotion (L), Positive emotions (M), Sadness (N), Tentative (O).

classifiers: Random Forest, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Naive
Bayes, Decision Trees, Support Vector Machines, and Logistic Regression. Choice of classifier does
not change the results; logistic regression results are presented.

Figure 10 shows the accuracy of the logistic regression classifier using each of the feature sets for
the affective and cognitive categories, and for the positive-emotion, negative-emotion, and insight
subcategories. Network properties alone provide significantly better predictions of the psychol-
ogy of the decision-makers than the price changes alone. Furthermore, the figure indicates that
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combining the two types of features does not yield a significant improvement over the network
features alone. This pattern suggests that network structure is more predictive of a network’s
collective affect and cognition than the price shock itself.

5.4 Decision-Making Behavior

We now turn to the question of whether the structure of the communication networks provides
insight about the trading behavior of the firm. Since trading requires coordination and communi-
cation among the employees, it is likely that some of the high level trading decisions of the firm
are latent in the structure of the firm’s communication. We look at two important aspects of the
decision making process when the firm decides to make a trade—the quality of its trading decision
in terms of timing, and the decision to begin trading a stock that has not been traded for a long
period of time. Stock prices are crucial in both trading time and in deciding to trade a new stock,
hence when we test the predictive value of the networks, we always compare it against the stocks’
price changes. We find that the network structure is indeed predictive of these trading behaviors,
above and beyond what is predicted by price changes alone.

5.4.1 Predicting Performance. We begin by measuring whether the timing of each trade was
locally optimal. To measure local optimality of each transaction, we ask whether the firm would
have benefited from waiting until the next day to make the transaction. For a stock s traded on
day d we let ps,d denote the price of the stock for that transaction. We let pmax

s,d
and pmin

s,d
be the

maximum and minimum price of stock s on day d . If a stock s was bought on day d at price ps,d

and the maximum price of s the following day (pmax
s,d+1

) was less less than ps,d , then the company

would have benefited from waiting until the next day to buy stock s . Following this reasoning,
we label each buy transaction (s,d,ps,d ) as locally suboptimal if ps,d > pmax

s,d+1
and locally optimal

otherwise. Similarly, we label each sell transaction (s,d,ps,d ) as locally suboptimal if ps,d > pmin
s,d+1

and locally optimal otherwise. We observe that about 20% and 23% of all buy and sell transaction
are locally suboptimal.

We expect that the decision process of the firm does not always involve optimizing exactly
the day on which to make a transaction. Instead, the firm may focus most of its efforts on other
objectives—trying to decide which stocks to trade, how much to trade, or on long term profit as
opposed to small gains. To validate our measure of local optimality, we test whether the company’s
trades reflect an effort to trade on a locally optimal day by comparing the firm’s real performance
with their performance if the trades occurred on a random day.

We create a random set of transactions by taking each transaction in the dataset and generating
an alternative transaction of the same stock and same number of shares, but on a randomly selected
day. The price of the alternative transaction is selected uniformly at random between the minimum
and maximum price on the selected day.

The number of locally suboptimal transactions in the random set is 2% higher than in the actual
set of transactions. While 2% may not initially appear to be very large, it is easier to assess the
size of the difference when we compute the loss in profit that these locally suboptimal transaction
generate. For each locally suboptimal transaction (s,d,ps,d ), we let the number of shares traded be
Vs,d,p . The loss generated by this transaction is Vs,d,p ∗ |ps,d − ps,d+1 |. The difference in total loss
generated by the set of actual transactions and the set of random transaction is about $40 million.
This shows that the company performs much better than they would if they traded the same stock
and the same number of shares but on a randomly selected day. This validates our measure; we
now test if it is related to features of the networks.

We use our set of classifiers to predict whether transactions are locally optimal using the prop-
erties of the network, role communication features, and the price change features as predictors.
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Fig. 11. Prediction accuracy of logistic regression classifier when predicting if a trade is locally optimal vs.

the number of consecutive days the stock was traded. The curves show the results using network features,

price change features, and all features combined.

For each transaction ts,d of stock s on day d , we use the features of the graphGs,d (as described in
Section 3.1), the change in price Δps,d , and the absolute change in price |Δps,d | to predict whether
ts,d is locally optimal. Each feature also includes lagged values for 3 days before day d.

As we did before, we split time into 100 bins, and use each bin as a test set and all the previous
bins as training data. We also use a balanced set of positive and negative examples. Since some
stocks are traded very often and others are rarely traded, we further split the prediction task into
subtasks by the number of consecutive days on which transactions occurred. LettingTk be the set
of transactions that have occurred on at least the previous k days, we run the classifiers on each
set of transactions Tk for k = 0 . . . 6.

Figure 11 shows the accuracy of the Logistic Regression classifier for each set of transactions
Tk . The accuracy of the classifiers increases with the number of days of consecutive transitions,
suggesting the local optimality of routine transactions is easier to predict than that of unexpected
transactions. We also observe that the network features are significantly more predictive than
the price changes and role communication features. Furthermore, combining all the features only
marginally improves the accuracy of the classifier with network features alone. This shows that
the local optimality of the firm’s decisions are better aligned with the properties of their commu-
nication network than the changes in stock prices.

Feature Analysis. Having found that network structure can be predictive of locally optimal per-
formance in the hedge fund, we now explore which network features are predictive of high perfor-
mance. In particular, we analyze the coefficients of the network features in the Logistic regressions
we run on above. Since we found the network features outperform other features regardless of the
number of days of consecutive transactions, we aggregate the coefficients of all the regressions. We
focus our analysis on features that measure whether the network turtles up—clustering coefficient,
fraction of border edges, and strength of ties.

Figure 12 shows the average value of the coefficients of these three features. The figure includes
the coefficients of the feature based on the network from the day when the performance was
measured, as well as the network from one and two days prior. This allows us to explore the
relationship between performance and network structure on the days following the transactions.
We find a very clear trend. On the day of the transaction, a turtled up network—high clustering,
low faction of border edges, and high tie strength, is associated with lower performance. However,
on the two days prior to the transaction, the trend reverses—clustering and strength of ties have
a positive (but small) coefficient and fraction of border edges has a positive coefficient but much
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Fig. 12. Mean coefficient value of network features in Logistic regression predicting performance.

lower than on the day of the transaction. This suggests that on days prior to the transaction a
more turtled up network is predictive of high performance. Put together, these trends suggest that
high performance occurs when employees first discuss and coordinate their trading decisions with
their most frequent contacts, people in their clusters, and insiders on the days leading up to their
trades, and open up their communication to less frequent contacts, people from other clusters, and
outsiders as they get closer to trading. In other words, high performance occurs when networks
are initially turtled-up, but slowly open up as actions become more imminent.

5.4.2 Predicting Sudden Trading. We observed that it’s easier to predict the local optimality of
stocks that are traded consecutively. We now turn to a second, more basic question to study the
firm-level actions with respect to trading: Are we able to predict whether or not a stock is traded
on a given day? Our first observation is that many stocks are traded at very high frequencies, and
hence the best predictor of a stock being traded on given day is whether it was traded during the
previous few days. Given this, we pose the task of predicting new transactions—trades of stocks
that have not been traded for a given number of days prior to the transaction being considered.

Engaging on a new transaction requires coordination and discussion among the employees to
decide on details such as how much to trade and in what type of position to take on the stock.
While volume and position also need to be decided for sequential transactions, they are often
determined by the trend of transactions from previous days. We expect that when traders are
planning on executing a new trade, they will need to exchange information about a particular
stock for several days before actually executing a trade. The nature of such discussion may impact
the structure of the communication network, and thus, such structure may be predictive of a new
trade occurring.

We let NT d
k

be the set stocks that have not been traded for k weeks prior to day d . We say that a

stock s is k-unobserved on day d if it is in the set NT d
k

. That is, s is k-unobserved on day d if it has
not been traded during the past k weeks preceding d . Note that a k-unobserved stock on day d is
also k ′-unobserved on day d for all k ′ < k . We say that all stocks are 0-unobserved on all days.

We use our binary classifiers to predict whether stocks that are k-unobserved on day d will be
traded on day d . The setup of the prediction task is the same as in the last two sections—we split
time into 100 bins and use each bin as a test set and all the previous bins as training data, and we use
a balanced set of positive and negative examples. We use network features, role communication
features, and price change features (as described in Section 3.1), but in this case we also include
features that indicate whether the stock was traded on the 7 days prior to the k-week period when
the stock was not traded. For example, when we predict if a 1-unobserved stock s is traded on day
d , we know s was not traded on days d − 1, . . .d − 7, but we include features that indicate if s was
traded on days d − 8,d − 9, . . .d − 14.

Figure 13 shows the accuracy of the classifiers for different values of k . When k = 0 we are pre-
dicting whether stocks are traded on day d , regardless of whether they have been traded on the
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Fig. 13. Prediction accuracy of logistic regression classifier when predicting ifk-unobserved stocks are traded

vs. k . The curves show the results using network features, price change features, and all features combined.

Fig. 14. Mean coefficient value of network features in Logistic regression predicting sudden trading.

previous days. We observe that with no minimum window on the time since the last trade, the
7-day trading history of the stocks provides over 80% accuracy, and adding information about the
network, role communication, or stock prices does not significantly increase the accuracy. How-
ever, as k increases and we begin predicting trading of stocks that have not been traded for some
time, the accuracy of the stocks’ trading history alone drops significantly. When we add the price
change and role communication features to the trading history features, we only observe a small
increase in accuracy. However, adding the network features to the trading history features yields a
large increase increase in accuracy. For example, for k = 4, . . . , 9 the accuracy of the price change,
role communication and trading history features is always less than 60%. However, the accuracy
of the network and trading history features is over 69%. Finally, combining all the features does
not significantly improve the performance of the network features alone. This pattern is consistent
with what we found when predicting affective and cognitive content and trading performance.

Feature Analysis. We now explore the relationship between network features and sudden trading.
Figure 14 shows the average coefficient of clustering, strength of ties, and fraction of border edges
in the Logistic regressions that predict sudden trading. The figure includes the coefficients based
on the network from the day when sudden trading is being predicted, as well as the network from
one and two days prior. We observe that a low fraction of border edges and low tie strength on the
day of trading are predictive of sudden trading. The trend on days prior to trading is different. Both
fraction of border edges and tie strength have coefficients of much smaller magnitude, suggesting
that they are not as predictive on days preceding sudden trades. Clustering coefficient is never a
significant predictor of sudden trading. Overall, we do not find that sudden trading is predicted by
how turtled up the networks become on the day of the trades or on the days prior to it. Instead, a
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combination of high within-company and weak tie communication is predictive of sudden trades.
A possible explanation is that, when preparing to explore new stocks that have not been traded in
a while, employee prefer to discuss their strategy more with their colleagues than with outsiders,
but within the company, they explore the expertise of their weak connections.

6 CONCLUSION

Network science has examined the reaction of networks to internal stresses, particularly nodal
loss, but has given considerably less attention to the relationship between external shocks in a
network of stable members (Saavedra et al. 2008). Using all the instant messages among stock
traders in an investing organization and their outside contacts to define structural, cognitive, and
affective properties of their social network, we found that shocks—in the form of extreme price
changes—were not associated with conventional adaptive network responses to uncertainty such
as activating weak ties and external sources to obtain novel and diverse information. Rather, the
network turtled up. Relationships within the network favored strong ties, high clustering, com-
pany insiders, and colleagues with the same role within the company. We also find evidence that
emphasis within the company during times of stress is on planning and analyzing decision mak-
ing rather than acting and trading, which could reveal the mechanism responsible to the observed
changes in network structure.

Implications of this work relate to networks facing disruptive environments and “normal acci-
dents” (Perrow 2011). One often cited benefit of networks is that they are more agile than hierar-
chies and more coordinated than markets in solving collective action problems (Powell 2003; Uzzi
1996). While one basis for this benefit has been to show that institutions organized as networks
do better than hierarchies in turbulent environments, there has been little work on the actual
network dynamics that arise in organizations facing environmental disruptions. Indeed, the 2013
DARPA “robolympics” challenge was instituted to investigate whether machines can work hand
in hand with humans to address problems of organizing in the face of “normal accidents” better
than humans can on their own. Our case indicated that networks facing shocks turtle up rather
than open up. Nevertheless, we find that networks are relatively elastic—turtled up states return
to normal states relatively fast. Whether the combination of these changes leads to better or worse
performance relative to a set criterion beyond the metrics we investigated and, provided by the-
ory, is a logical research extension and a broad goal for improving knowledge about the scientific
functionality and practical management of social networks.

Moreover, we find that the network structure is diagnostic of important patterns of behavior —
including the emotional and cognitive content of individual communications, local optimality of
transactions, and the sudden execution of new transactions. It is noteworthy that the structure
of the networks is more effective at predicting these behavioral patterns than the price changes
in the market. This suggests that the network-level changes we observe are not simple offshoots
of the underlying price changes, but instead that they carry additional rich information that can
be used to analyze the organization’s behavior. Understanding the network’s reaction to shocks
can thus be an important factor in understanding the organization more broadly.

The role of the network in this analysis raises a number of further open questions. In particular,
while there is a clear relationship between changes in the market and changes in the network
and inter- and intra-group communication dynamics, it is interesting to consider what the lower-
level mechanisms that produce these effects might be. As we come to better understand the links
between shocks, networks, communication dynamics, and behavior, we can thus arrive at a clearer
picture of social and organizational dynamics in the context of their surrounding environments.

A limitation of this work is that our findings are limited to a single hedge fund. It would be
interesting to investigate whether the patterns we observe in this firm generalize to other type
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of organizations and other communities that face exogenous shocks. In particular, testing the
universality of the turtling-up effect we observe on others types of social networks is a promis-
ing future direction as it would have consequences for the group’s ability to process information
and react to the shock. Settings such as natural disasters, financial crisis, and political instability
are examples of settings where the communication structure of a group could be affected by the
event. Furthermore, the types of activities and behaviors we analyze in this work are analogous to
activities that can take place in many other settings. For instance, affect and cognitive processes,
performance, and engaging in new or underexplored activities can be studied in other contexts be-
yond hedge funds or even organizations. Exploring whether communication structure is predictive
of such behaviors is also an interesting direction of future research.
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