Social Network Under Stress

Daniel M. Romero
School of Information
University of Michigan

In collaboration with Brian Uzzi and Jon Kleinberg
Social Network Temporal Dynamics
Social Network Temporal Dynamics

Temporal dynamics of networks:

Short diameter, densification, clustering, heavy tail degree distribution, ... [Leskovec et al. 2007, Barabasi et al. 1999, Kossinets et al. 2009, ...]
Social Network Temporal Dynamics

Temporal dynamics of networks:
Short diameter, densification, clustering, heavy tail degree distribution, ... [Leskovec et al. 2007, Barabasi et al. 1999, Kossinets et al. 2009, ...]

Useful for:
• Link prediction
• Detecting influential nodes
• Finding communities
Social Network Temporal Dynamics

t=1
Social Network Temporal Dynamics

$t=1$

$t=2$
Social Network Temporal Dynamics
Social Network Temporal Dynamics
Hedge Fund Data

Instant Messages (IM):
• Full record of IMs: content, sender, recipient, timestamp
• 182 internal decision makers, 8646 outside contacts
• 22 Million IMs
Hedge Fund Data

Instant Messages (IM):
• Full record of IMs: content, sender, recipient, timestamp
• 182 internal decision makers, 8646 outside contacts
• 22 Million IMs

Stock Trading:
• Full record of all transactions: stock, price, number of stocks, type of transaction (Buy, Sell), timestamp
• 600K trades
• 2008 – 2012
In This Talk

Market Movements (Shocks)

Social Network
In This Talk

Market Movements
(Shocks)

Social Network

Trading
In This Talk

Market Movements (Shocks)

Social Network

Trading

Performance
In This Talk

Market Movements (Shocks)

Social Network

Trading

Performance

Emotional and Cognitive Content
In This Talk

Market Movements (Shocks)

Social Network

Trading

Performance

Emotional and Cognitive Content
Measures

Shock: Change in price of stock s on day d

% change: $(\text{closing} - \text{opening}) / \text{opening}$
Measures

Shock: Change in price of stock s on day d

% change: \(\frac{\text{closing} - \text{opening}}{\text{opening}} \)

For each stock s and day d, generate network $G(s,d)$ among employees who mention s
Measures

Shock: Change in price of stock s on day d

% change: \(\frac{\text{closing} - \text{opening}}{\text{opening}} \)

For each stock s and day d, generate network $G(s,d)$ among employees who mention s
Measures

Shock: Change in price of stock s on day d

% change: $(\text{closing} – \text{opening}) / \text{opening}$

For each stock s and day d, generate network $G(s,d)$ among employees who mention s.
Measures

Shock: Change in price of stock s on day d

% change: $(\text{closing} – \text{opening}) / \text{opening}$

For each stock s and day d, generate network $G(s,d)$ among employees who mention s
Measures

Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

For each stock s and day d, generate network $G(s,d)$ among employees who mention s

Network’s features:
• Size (Nodes, edges)
Measures

Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

For each stock s and day d, generate network $G(s,d)$ among employees who mention s

Network’s features:
- Size (Nodes, edges)
- Density (Clustering)
Measures

Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

For each stock s and day d, generate network $G(s,d)$ among employees who mention s

Network’s features:
- Size (Nodes, edges)
- Density (Clustering)
Measures

Shock: Change in price of stock s on day d

% change: \(\frac{(\text{closing} - \text{opening})}{\text{opening}} \)

For each stock s and day d, generate network $G(s,d)$ among employees who mention s

Network’s features:
- Size (Nodes, edges)
- Density (Clustering)
Measures

Shock: Change in price of stock \(s \) on day \(d \)
% change: \((\text{closing} – \text{opening}) / \text{opening}\)

For each stock \(s \) and day \(d \), generate network \(G(s,d) \) among employees who mention \(s \)

Network’s features:
- Size (Nodes, edges)
- Density (Clustering, tie strength)
Measures

Shock: Change in price of stock s on day d

% change: \(\frac{(\text{closing} - \text{opening})}{\text{opening}} \)

For each stock s and day d, generate network $G(s,d)$ among employees who mention s

Network’s features:
- Size (Nodes, edges)
- Density (Clustering, tie strength)
Measures

Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

For each stock s and day d, generate network $G(s,d)$ among employees who mention s

Network’s features:
• Size (Nodes, edges)
• Density (Clustering, tie strength)
Measures

Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

For each stock s and day d, generate network $G(s,d)$ among employees who mention s

Network’s features:
• Size (Nodes, edges)
• Density (Clustering, tie strength)
• Openness (Border edges)
Measures

Shock: Change in price of stock s on day d
% change: (closing – opening) / opening

For each stock s and day d, generate network $G(s,d)$ among employees who mention s

Network’s features:
• Size (Nodes, edges)
• Density (Clustering, tie strength)
• Openness (Border edges)
Turtled-up network
Turtled-up network

Open network
Theoretical Expectations

Networks may turtle-up during shocks:

- Trust (Granovetter 1985, Coleman 1988)
- Expertise knowledge, repeated information channels (Coleman 1990)
- Threat rigidity (Staw 1981)
Theoretical Expectations

Networks may turtle-up during shocks:

- Trust [Granovetter 1985, Coleman 1988]
- Expertise knowledge, repeated information channels [Coleman 1990]
- Threat rigidity [Staw 1981]

Networks may open-up during shocks:

- New information through weak ties [Granovetter 1973]
- Diverse information from different groups (structural holes) [Burt 92]
Num of nodes | Past: Ratio of num. nodes in $G(s,d)$ and mean num. nodes in $G(s,d')$ for $d' < d$.
Findings: Size

Shocks → More nodes and edges

Num of nodes | Past: Ratio of num. nodes in $G(s,d)$ and mean num. nodes in $G(s,d')$ for $d' < d$.
Findings: Clustering Coefficient

Clustering coefficient of a node n: the ratio of the existing and possible number of edges among the neighbors of n.
Findings: Clustering Coefficient

Clustering coefficient of a node n: the ratio of the existing and possible number of edges among the neighbors of n.
Findings: Clustering Coefficient

Clustering coefficient of a node n: the ratio of the existing and possible number of edges among the neighbors of n.

C = 4/10

Shocks \rightarrow Higher Clustering coefficient
Tie strength: \((x,y)\) is \(k\)-strong, if \(y\) is among the top \(k\%\) most frequent connections of \(x\)
Findings: Tie Strength

Tie strength: \((x,y)\) is \(k\)-strong, if \(y\) is among the top \(k\%\) most frequent connections of \(x\)
Findings: Openness

Border edges: involve an outside contact
Findings: Openness

Shocks ➔ More border edges

Border edges: involve an outside contact
Networks “Turtle-up” During Shocks

• Higher clustering
• Stronger edges
• More internal communication

Consistent with theories of:
• Trust
• Expertise knowledge, repeated information channels
• Threat rigidity
LIWC Categories

Linguistic Inquiry Word Count (LIWC): text analysis tool, which identifies words that belong to various categories.

<table>
<thead>
<tr>
<th>Affective Processes</th>
<th>Cognitive Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Insight</td>
</tr>
<tr>
<td>Love, nice</td>
<td>Think, Consider</td>
</tr>
<tr>
<td>Negative</td>
<td>Causation</td>
</tr>
<tr>
<td>Hurt, ugly</td>
<td>Because, Hence</td>
</tr>
<tr>
<td>Anxiety</td>
<td>Discrepancy</td>
</tr>
<tr>
<td>Worried, fearful</td>
<td>Should, Could</td>
</tr>
<tr>
<td>Anger</td>
<td>Tentative</td>
</tr>
<tr>
<td>Hate, kill</td>
<td>Maybe, Guess</td>
</tr>
<tr>
<td>Sadness</td>
<td>Certainty</td>
</tr>
<tr>
<td>Crying, sad</td>
<td>Always, Never</td>
</tr>
<tr>
<td></td>
<td>Inhibition</td>
</tr>
<tr>
<td></td>
<td>Block, Constrain</td>
</tr>
<tr>
<td></td>
<td>Inclusive</td>
</tr>
<tr>
<td></td>
<td>With, Include</td>
</tr>
<tr>
<td></td>
<td>Exclusive</td>
</tr>
<tr>
<td></td>
<td>But, Exclude</td>
</tr>
</tbody>
</table>
Price Changes vs. Emotions

Positive price changes \(\rightarrow\) Higher positive emotions
Price Changes vs. Emotions

Positive price changes ➞ Higher positive emotions
Negative price changes ➞ Higher negative emotions

Emotions are asymmetric with respect to price change.
Price changes \rightarrow Higher cognitive language

Cognitive processes are asymmetric with respect to price change.
Predicting Sentiment and Cognition

Task: For a fixed stock s and day d, predict if IMs that mention s on day d contain more words in the category than average.
Task: For a fixed stock s and day d, predict if IMs that mention s on day d contain more words in the category than average.
Predicting Sentiment and Cognition

Task: For a fixed stock s and day d, predict if IMs that mention s on day d contain more words in the category than average.
Task: For a fixed stock s and day d, predict if IMs that mention s on day d contain more words in the category than average.
Predicting Sentiment and Cognition

Task: For a fixed stock s and day d, predict if IMs that mention s on day d contain more words in the category than average.
Task: For a fixed stock s and day d, predict if IMs that mention s on day d contain more words in the category than average.
Network variables are more predictive of type of content than price changes.
Predicting Stock Trading
Predicting Stock Trading

Task: Predict whether a stock that has not been traded for \(k \) weeks will be traded.
Network variables are more predictive of type of sudden stock trading than price changes.

Task: Predict whether a stock that has not been traded for k weeks will be traded.
Conclusions

• Relationship between stock market shocks and social network structure

• Competing hypotheses: turtle up vs. open network structure

• Communication “turtles-up” during shocks.

• Network structure is predictive of trading, performance, and emotional and cognitive content.

• Stock market changes do not improve prediction accuracy.
Network variables are more predictive of performance than price changes.

Suboptimal trade: Worse price than the worst price the next day.

Task: For a fixed stock s traded on day d, predict if it’s suboptimal.

N-serial trades: A trade of stock s that has occurred for at least N consecutive days.