Herding a Deluge of Good Samaritans How GitHub Projects Respond to Increased Attention

Danaja Maldeniya, Ceren Budak, Lionel P. Robert, Daniel M. Romero School of Information University of Michigan

Collaborative crowds produce value in the information economy

Boundaries and structure

Loosely knit

Boundaries and structure

Formal roles/routines

Loosely knit

Flexible roles/routines

Organizations Vs. Crowds

Formal roles/routines

Contractual

Loosely knit

Flexible roles/routines

Often non-monetary

Organizations Vs. Crowds

Boundaries and structure

Formal roles/routines

Contractual

What do these deviations from organizations mean for crowd dynamics?

Loosely knit

Flexible roles/routines

Often non-monetary

How do crowds respond to exogenous shocks?

Research Question

Implications

- Understanding how crowds respond to shocks and the resulting outcomes can help
 - (1) teams be better prepared and (2) build better crowd platforms

Current Study

How does a GitHub project trending change the behavior of its core team and the larger contributor community?

Outline

- 1. Hypotheses
- 2. GitHub Workflow
- 3. Shocks on GitHub
- 4. Causal Framework
- 5. Findings

11

Outline

- 1. Hypotheses
- 2. GitHub Workflow
- 3. Shocks on GitHub
- 4. Causal Framework
- 5. Findings

12

Organizational + Empirical Studies Theory of Crowds

Theory

lens: Organizational Change (Ex: Whetten. 1987)

Organizational + Empirical Studies Theory of Crowds

Theory

lens: Organizational Change (Ex: Whetten. 1987)

setting: Rapidly growing small organizations (Fombrun and Wally. 1989; Hambrick and Crozier. 1985 etc.)

Hypotheses

Organizational + Empirical Studies Theory of Crowds

Organizational + Theory

<u>lens</u>: Organizational Change (Ex: Whetten, 1987)

setting: Rapidly growing small organizations (Fombrun and Wally. 1989; Hambrick and Crozier. 1985 etc.)

rationale:

- long-tail size and popularity distribution of GitHub projects
- 2. Member vs. Outsider dichotomy

al ₊ Empirical Studies of Crowds

+

Organizational Theory

<u>lens</u>: Organizational Change (Ex: Whetten, 1987)

setting: Rapidly growing small organizations (Fombrun and Wally. 1989; Hambrick and Crozier. 1985 etc.)

rationale:

- long-tail size and popularity distribution of GitHub projects
- 2. Member vs. Outsider dichotomy

Empirical Studies of Crowds

<u>GitHub Dynamics:</u>

Contribution (Ex: Dabbish et al. 2012) Coordination (Ex: Romero et al. 2015) Success (Ex: Vasilescu et al. 2015) etc.

+

Organizational Theory

<u>lens</u>: Organizational Change (Ex: Whetten, 1987)

setting: Rapidly growing small organizations (Fombrun and Wally. 1989; Hambrick and Crozier. 1985 etc.)

rationale:

- long-tail size and popularity distribution of GitHub projects
- 2. Member vs. Outsider dichotomy

Empirical Studies of Crowds

<u>GitHub Dynamics:</u>

Contribution (Ex: Dabbish et al. 2012) Coordination (Ex: Romero et al. 2015) Success (Ex: Vasilescu et al. 2015) etc.

Shocks on Crowds:

On Wikipedia;

- (1) Loss of workforce (Zhang et al. 2017)
- (2) Recognition (Zhang et al. 2018)
- (3) Attention (Zhang et al, 2019)

1. Growth — Trending increase community engagement (Begel et al. 2013, Jiang et al. 2017)

- 1. **Growth** Trending increase community engagement (Begel et al. 2013, Jiang et al. 2017)
- 2. Growing Pains Strain on coordination will cause backlogs (Fombrun and Wally. 1989, Hambrick and Crozier. 1985)

- 1. **Growth** Trending increase community engagement (Begel et al. 2013, Jiang et al. 2017)
- 2. **Growing Pains** Strain on coordination will cause backlogs (Fombrun and Wally. 1989, Hambrick and Crozier. 1985)
- 3. Work Routines Core team will transition to admin. role (Child and Keiser. 1981, Hambrick and Crozier. 1985)

- 1. **Growth** Trending increase community engagement (Begel et al. 2013, Jiang et al. 2017)
- 2. **Growing Pains** Strain on coordination will cause backlogs (Fombrun and Wally. 1989, Hambrick and Crozier. 1985)
- 3. Work Routines Core team will transition to admin. role (Child and Keiser. 1981, Hambrick and Crozier. 1985)
- 4. **Coordination** Work will become open and decentralized (Child and Keiser. 1981, Miller. 1994, Whetten. 1987, Gronn. 2002)

Outline

- 1. Hypotheses
- 2. GitHub Workflow
- 3. Shocks on GitHub
- 4. Causal Framework
- 5. Findings

23

Only members can modify files in the main branch

Any user, member or not, can create an issue to discuss a bug, feature request, usage query etc.

Any user can create a copy (fork) of the project for themselves

External contributors can submit changes made to a fork to the parent project as a pull request — must be approved by members

27

Outline

- 1. Hypotheses
- 2. GitHub Workflow
- 3. Shocks on GitHub
- 4. Causal Framework
- 5. Findings

Shocks on GitHub

Repositories Developers	Spoken Language: Any - Lar	nguage: Any - Date rang
kamranahmedse / developer-roadmap Roadmap to becoming a web developer in 2020		
🖈 100,546 🦞 16,147 🛛 Built by 🎇 🌆 🏠 🌉 🏭		*
nychealth / coronavirus-data		
🖈 238 💡 49 Built by 🏤		%
ITaysonLab / gorkiy JaDX decompile of com.askgps.personaltrackercore (Mage)	loscow COVID-19 person tracker). Note that I'm	
NOT related to the development of this app. — Java 🚖 144 😵 49 Built by 🔳		*
donnemartin / system-design-primer		
● Python ★ 87,724 ¥ 15,015 Built by 💱 🚱 🌏 🖼	system design interview. Includes Anki flashcards.	*
eclipse-theia / theia		
TypeScript ★ 8,583 ¥ 1,015 Built by 🔊 🗟 🖙 9	emented in TypeScript.	*
trekhleb / javascript-algorithms Algorithms and data structures implemented in Java	aScript with explanations and links to further	
readings		<u>ــ</u>
- JavaScript 🕱 05,788 - ¥ 10,813 Built by 🌉 🔜 🎆		~

ge:	Today -	
	★ Star	
837	stars today	
73	★ Star stars today	
	★ Star	
r 34	stars today	
	🛨 Star	
770	stars today	
	★ Star	
365	stars today	
	★ Star	
543	stars today	

- 1. GitHub chooses projects by popularity and activity
- 2. Updated every 3 hours
- 3. Overall and language specific lists 25 projects each

4. Can follow/like projects directly

Trending Drives Community Attention

Day 0 starts from the moment of trending

Shocks Dataset

Trending events (6/27/18 - 1/31/19)

Shocks Dataset

Trending events

(6/27/18 - 1/31/19) Remove events during first 14 days

Trending events (6/27/18 - 1/31/19) 1107 shocks

Shocks Dataset

Remove events during first 14 days Select first best "Top 5" for each project Remove projects with no activity before shock (project, date, programming language)

Trending Drives Community Attention

Day 0 starts from the moment of trending

But there's a problem

Trending Drives Community Attention

Projects that trended were already growing and popular before trending

Day 0 starts from the moment of trending

Outline

- 1. Hypotheses
- 2. GitHub Workflow
- 3. Shocks on GitHub
- 4. Causal Framework
- 5. Findings

Our Approach

Propensity Score Matching + Difference-in-Difference

Identify a control set to account for prior growth

Estimate effect of trending on behavior

(The GitHub Blog. 2013. Explore what is Trending on GitHub.)

Propensity Score Matching

The GitHub trending algorithm primarily uses the numbers of stars and forks and their growth over time to select projects

- 1. Estimate propensity of an active project trending on a given date
- 2. Find nearest neighbors for shocks by propensity and covariate similarity
- 3. Stratify the combined set of shocks and controls by propensity
- 4. Are shocks and controls within each strata adequately similar?

* See the paper for additional details

Propensity Score Matching*

Difference-in-Difference Model

Before Trending

$$y_{it} = \beta_0 + \beta_1 t + \beta_2 I + \beta_3 t I + \beta_4 B + \beta_x C + \epsilon$$

 $\beta_x C$ - controls

After Trending

 y_{it} - behavior y for project *i* at period t I = 1, if *i* is shocked, else 0 B - Fixed effect for PS block

Difference-in-Difference Model

Before Trending

$$y_{it} = \beta_0 + \beta_1 t + \beta_2 I + \beta_3 t I + \beta_4 B + \beta_x C + \epsilon$$

 $\beta_x C$ - controls

After Trending

 y_{it} - behavior y for project *i* at period t I = 1, if *i* is shocked, else 0 B - Fixed effect for PS block

43

Difference-in-Difference Model

Before Trending

$$y_{it} = \beta_0 + \beta_1 t + \beta_2 I + \beta_3 t I + \beta_4 B + \beta_x C + \epsilon$$

 $\beta_x C$ - controls

After Trending

 y_{it} - behavior y for project *i* at period t I = 1, if *i* is shocked, else 0 B - Fixed effect for PS block

effect of trending on outcome

Outline

- 1. Hypotheses
- 2. GitHub Workflow
- 3. Shocks on GitHub
- 4. Causal Framework
- 5. Findings

45

- (a) Community interest will increase
- (b) External contributions will increase

(a) Community interest will increase

(a) Community interest will increase

(a) Community interest will increase

The shock leads to an explosion in external attention on a project — while controls lose attention

(b) External contributions will increase

H1: Growth

Overall contributions also see an increase after the shock

(b) External contributions will increase

But, average work done by an outsider declines — more casual contributions?

H2: Growing Pains

(a) Increased external contributions will lead to larger backlogs with members

Members take longer to respond to *outsiders* after trending

Diff-in-Diff Diff-in-Shocked

H2: Growing Pains

Task (issues/PRs) completion efficiency remains unchanged; may be helped by many more trivial items?

(b) Increased external contributions will lead to larger backlogs with members

H3: Work Routines

outsiders more

- (a) Members will respond to and direct
- (b) Members will do less development

H3: Work Routines

(a) Members will respond to and direct outsiders more

Members are increasing their administrative focus

(b) Members will do less development

H3: Work Routines

Members cut back substantially on coding after trending

Distributed Leadership (Gronn, 2002)

(a) Members will increasingly engage with outsiders

Distributed Leadership (Gronn, 2002)

(a) Members will increasingly engage with outsiders(b) Outsiders will become more important within work routines

Distributed Leadership (Gronn, 2002)

(a) Members will increasingly engage with outsiders(b) Outsiders will become more important within work routines(c) Collaboration will become more modular

Distributed Leadership (Gronn, 2002)

(a) Members will increasingly engage with outsiders
(b) Outsiders will become more important within work routines
(c) Collaboration will become more modular
(d) Members will reinforce core values through automation

Members collaboratively engage outsiders more through Issue/PR discussions — they also accept more contributions

(a) Members will increasingly engage with outsiders

Members collaboratively engage outsiders more through Issue/PR discussions — they also accept more contributions

(a) Members will increasingly engage with outsiders

% Outsiders among Top 50% File Editors

(c) Collaboration will become more modular

(c) Collaboration will become more modular

66

automation

Projects are more likely to use automation after trending, but no more than the control

(d) Members will reinforce core values through

(d) Members will reinforce core values through automation

Projects use less automated tasks after trending (Potential selection bias?)

Summary

- In the aftermath of an attention shock,
 - Crowds may grow rapidly in size and work done
 - Most new engagements may be shallow
 - The core team will struggle to stay responsive
 - Outsiders will take on more responsibility

Summary

- In the aftermath of an attention shock,
 - Crowds may grow rapidly in size and work done
 - Most new engagements may be shallow
 - The core team will struggle to stay responsive
 - Outsiders will take on more responsibility
- Implications for GitHub teams
 - Dealing with a multitude of shallow contributions may be inefficient for members
 - Low responsiveness towards outsiders may increase newcomer attrition
 - Rapidly changing composition of the core workforce will make maintaining project quality and values challenging.

Summary

- In the aftermath of an attention shock,
 - Crowds may grow rapidly in size and work done
 - Most new engagements may be shallow
 - The core team will struggle to stay responsive
 - Outsiders will take on more responsibility
- Implications for GitHub teams
 - members

 - project quality and values challenging.
- Next Steps How do observed behavioral

- Dealing with a multitude of shallow contributions may be inefficient for

- Low responsiveness towards outsiders may increase newcomer attrition

- Rapidly changing composition of the core workforce will make maintaining

changes affect future performance of projects?