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Abstract

It has often been taken as a working assumption that di-
rected links in information networks are frequently formed
by “short-cutting” a two-step path between the source and the
destination — a kind of implicit “link copying” analogous to
the process of triadic closure in social networks. Despite the
role of this assumption in theoretical models such as prefer-
ential attachment, it has received very little direct empirical
investigation. Here we develop a formalization and method-
ology for studying this type of directed closure process, and
we provide evidence for its important role in the formation of
links on Twitter. We then analyze a sequence of models de-
signed to capture the structural phenomena related to directed
closure that we observe in the Twitter data.

Introduction
Information networks, which connect Web pages or other
units of information, and social networks, which connect
people, are related notions, but they exhibit fundamental dif-
ferences. Two of the principal differences are based on di-
rectionality and heterogeneity. First, information networks
are generally directed structures, with links created by one
author to point to another; social networks, on the other
hand, tend to be represented in most basic settings as undi-
rected structures, expressing relationships that are approxi-
mately mutual. Second, information networks tend to con-
tain a few nodes with extremely large numbers of incoming
edges — documents or pages that are “famous” and hence
widely referenced —- while social networks exhibit dispar-
ities in connectivity only to a smaller extent, since even
the most gregarious people have some practical limit on the
number of genuine social ties they can form.

The link structure of the Web, and of well-defined subsets
of the Web such as the blogosphere and Wikipedia, are clear
examples of information networks; social-networking sites
such as Facebook have provided us with very large represen-
tations of social networks that are derived from social struc-
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Figure 1: (a) Triadic closure in an undirected graph produces
a triangle when an edge connects two nodes who already
have a common neighbor. (b) Analogously, in a directed
information network, directed closure occurs when a node
A links to a node C to which it already has a two-step path
(through a node B). This creates a directed triangle (a “feed-
forward” structure on three nodes).

ture in the off-line world. An interesting recent development
has been the growth of social media sites that increasingly
interpolate between the properties of information networks
and social networks. The micro-blogging site Twitter is a
compelling example of such an interpolation. A user on
Twitter is able to create links to other users whose content he
or she is interested in; this is referred to as following these
users, and the set of all such follower relations defines a net-
work. The structure of this network reflects properties both
of a social network, since it exposes underlying friendship
relations among people, and also of an information network,
since it is directed and also contains huge concentrations of
links to specific “celebrities” and automated generators of
news content that reflect fundamentally informational rela-
tions.

Link Formation in Information Networks. In a social
network, triadic closure is one of the fundamental processes
of link formation: there is an increased chance that a friend-
ship will form between two people if they already have
a friend in common (Rapoport 1953; Granovetter 1973).
(For example, we could imagine the A-C friendship in Fig-
ure 1(a) as forming after the existence of the A-B and B-C
edges, and accelerated by the existence of these two edges.)
Recent empirical analysis has quantified this effect on large
social network datasets (Kossinets and Watts 2006). Is there
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Figure 2: In this example, the edge from A to C exhibits
closure if there is already a two-step path from A to C (i.e.,
through B1, B2, B3) when the A-C edge arrives.

an analogous process in information networks?
A natural hypothesis for such a process is the following:

if a node A in an information network links to B, and B
links to C, then one should arguably expect an increased
likelihood that A will link to C — since the author of A has
an increased ability to become aware of C via the two-step
path through B. (See Figure 1(b).) We will refer to this
as the directed closure process. In addition to its intuitive
appeal, this process contains an implicit hypothesis about
how links are formed in information networks — through
the “copying” of a link from something you already point
to — and such copying mechanisms form a crucial part of
the motivation for the fundamental notion of preferential at-
tachment (Albert and Barabási 2002; Kumar et al. 2000;
Newman 2003). Despite the importance of the notion, how-
ever, there has been remarkably little empirical analysis of
the extent to which this type of directed closure is truly at
work in real information networks, and of the effects it may
have on network structure.

The Present Work: The Directed Closure Process. In
this paper, we analyze the directed closure process using
data from Twitter: we provide some of the first evidence
on large information networks that directed closure is taking
place at a rate significantly above what would be expected
by chance; we identify a surprising level of heterogeneity
in how strongly it operates across different parts of the net-
work; and we analyze models that capture these effects.

An important difference between triadic closure in social
networks and directed closure in information networks is the
following observation, which in a sense serves as the starting
point for our analysis: while the extent of triadic closure can
be assessed from a single snapshot of an undirected graph,
the evaluation of directed closure inherently requires some
form of temporal sequence information. Indeed, when we
see an undirected triangle such as the one in Figure 1(a), we
know that whichever edge formed last will complete a two-
step path consisting of the earlier two edges, and hence will
satisfy the definition of triadic closure. On the other hand,
the structure in Figure 1(b) satisfies the definition of directed
closure only if the A-C edge formed after the other two.

This means that the amount of directed closure in a di-

rected graph depends not just on the graph’s structure, but
also on the order in which edges arrive. Because of this we
are able to develop a natural randomization test to evaluate
whether directed closure is taking place in a given network
at a rate above chance. Specifically, we say that an edge
in a directed graph exhibits closure if, at the time it forms,
it completes a directed two-step path between its endpoints.
For example, in Figure 2, the A-C edge exhibits closure if
and only if it arrives after the pair of edges in one of the three
possible two-step A-C paths through B1, B2, or B3. For a
given network, we can thus ask: how many edges exhibit
closure, and how many would have exhibited closure (in ex-
pectation) if the edges had arrived in a random order? The
point is that in any arrival order of the edges, some number
of the edges will close directed triangles; but if directed clo-
sure is a significant effect, then we may expect to see a larger
number of such triangle-closings compared to what we’d see
under a random arrival order.

To investigate this empirically, we choose a random sam-
ple of micro-celebrities on Twitter, which we define to be
users with between 10,000 and 50,000 followers. (We
will abbreviate the term as µ-celebrity.) For each such µ-
celebrity C, we determine the number of edges to C that
exhibit closure, and compare it to the expected number of
edges to C that would exhibit closure in a random ordering
— we will refer to this latter number as the random-ordering
baseline. Given that we are studying the followers of users
with high numbers of in-links, one would conjecture that
there are two competing forces at work. In one direction is
the intuitively natural tendency of directed closure to create
short-cuts in the presence of two-step paths. In the other di-
rection, however, is the plausible tendency for people to link
first to celebrities, before they link to more obscure users;
that is, it is not clear that closure processes are necessary
in order for people to discover and link to very prominent
users. This latter effect would tend to cause triangles as in
Figure 1(b) to appear with the A-C and B-C edges first, re-
ducing the extent of directed closure in the real data.

We find in the Twitter data that the number of edges to a
µ-celebrity that exhibit closure is higher than the random-
ordering baseline, indicating that even in linking to celebri-
ties, there is an above-chance tendency to do this by clos-
ing an existing two-step path. This finding suggests a range
of further interesting questions — specifically, whether the
high rate of directed closure is due to overt copying of fol-
lower lists (as in the intuitive basis for the definition), or due
to more subtle, implicit mechanisms that produce copying
behavior at a macroscopic level. To address this question, as
we discuss below, we consider the extent to which directed
closure can arise even in models that do not explicitly build
in copying as a mechanism.

The Present Work: Directed Closure and Network
Structure. Given the prevalence of directed closure in the
Twitter network, one might suppose that it operates accord-
ing to a relatively uniform underlying mechanism. But
what we find, surprisingly, is significant heterogeneity in the
amount of directed closure. We define the closure ratio of



a µ-celebrity C to be the fraction of C’s incoming edges
that exhibit closure. If we track the closure ratio of C as
edges to C are added in their temporal order, we find that
the ratio stabilizes to an approximately constant value fairly
early. However, the value to which the closure ratio sta-
bilizes varies considerably from one µ-celebrity to another,
and is not closely related to the number of followers. Thus,
the closure ratio appears to be an intrinsic and diverse prop-
erty of users with large numbers of followers: some such
users receive a clear majority of their incoming links via the
closing of a directed triangle, while others receive a much
smaller proportion of their links this way.

The cause of this is at some level a mystery, but to get
a better understanding we look at the predictions of some
basic network formation models. We present a heuristic cal-
culation based on the preferential attachment model, sug-
gesting that a user’s closure ratio should be related to the
sum of the in-degrees of the user’s followers, and we find
on the Twitter data that the closure ratio indeed follows this
quantity more closely than simpler quantities such as the
user’s own number of followers. However, preferential at-
tachment is not able to explain either the diversity of dif-
ferent closure ratios, or the fact that they can be large on
nodes of small in-degree; to understand these effects better,
we analyze more complex models that do not incorporate
copying as an overt or explicit mechanism in link formation,
including preferential attachment with fitness (Bianconi and
Barabási 2001) and a version of preferential attachment with
embedded community structure which is related to a model
of Menczer (2002).

We also note that the closure ratio of a user is distinct from
— and exhibits qualitatively different properties than — the
clustering coefficient (Watts and Strogatz 1998). The clus-
tering coefficient is the fraction of pairs in a node’s neigh-
borhood that are directly linked, and in the neighborhood of
a high-degree node it is almost always a small quantity, for
the fundamental reason that most of a high-degree node’s
neighbors don’t have enough incident edges to produce a
significant clustering coefficient (Vazquez 2003). The clo-
sure ratio, on the other hand, is a quantity that can be quite
large even for the neighborhoods of nodes with extremely
large degrees.

Twitter Data and Micro-Celebrities
We collected a random sample of µ-celebrities on Twitter,
each with between 10,000 and 50,000 followers. For each
of these µ-celebrities C, we determine the subset of edges
to C that exhibit closure.

It is an interesting fact that determining this subset does
not require exact time-stamps or full network structure.
Rather, it is enough to have a chronologically ordered list
Lin(C) of the followers of C, and for each user A ∈
Lin(C), a chronologically ordered list Lout(A) of the users
that A follows.1 From these lists, we can conclude that an
edge from A to C exhibits closure if and only if there exists

1Such ordered lists were available via the Twitter API at the
time we performed these analyses (Kalucki 2009).

Figure 3: Closure ratio as a function of the arrival order of
incoming edges for 18 Twitter µ-celebrities. The following
are the professions of the µ-celebrities in each figure (from
top to bottom curve). Top figure: Journalist, Venture Capi-
tal Blogger, Actor, Actor, DJ, Skateboarder. Middle figure:
Comedian, Film Producer, Social Media Blogger, Musician,
Actor, Journalist. Bottom figure: Comedian, TV Presenter,
Actor, Musician, Filmmaker, Actor.



a B such that B precedes A in Lin(C) and B precedes C in
Lout(A).

In Figure 3, we show the running fraction of edges that
exhibit closure as the followers of a µ-celebrity C arrive
in chronological order. As noted in the introduction, in
most cases this fraction reaches a relatively stable value
quite quickly, and this stable value varies a lot from one µ-
celebrity to another. Our models in the subsequent sections
will help us investigate this phenomenon.

Evidence for Directed Closure
We now use the randomization test described in the intro-
duction to identify evidence for the directed closure pro-
cess at work. We take the subgraph induced on the nodes
in {C} ∪ Lin(C), and we insert the edges in an order se-
lected uniformly at random from among all permutations of
the edges.

Specifically, we say that a user A is k-linked to a user
C if A follows C, and A also follows k followers of C.
(For example, in Figure 2, A is 3-linked to C.) Let Sk(C)
denote the set of all users who are k-linked to C, and let
fk denote the fraction of users in Sk(C) whose edge to C
exhibits closure.

Now, for each k with |Sk| > 10, we approximate the ex-
pected value of fk under the assumption that the order in
which the edges are created is chosen uniformly at random.
To do this, we run a simulation in which we generate a net-
work consisting simply of a node A pointing to a node C
and to k other nodes which also point to C; we randomly
choose |Sk| different orderings of the edges of this network
(one corresponding to each of the |Sk| followers who are
k-linked to the real µ-celebrity); and we then determine the
fraction of these random orderings in which the A-C edge
exhibit closure. We approximate the expected value of fk

over randomly ordered edges by the average closure ratio
among 100 runs of this simulation, and we define error bars
using the minimum and the maximum fraction among the
100 simulations.

We find the same trend for all the µ-celebrities in our sam-
ple, as shown in Figure 4: there is some K such that for all
k < K the actual value of fk is higher than the maximum
fraction from the 100 simulations. This means that at least
for small values of k the fraction of edges exhibiting closure
is much higher than expected by chance. This suggests the
existence of an underlying mechanism — copying of links
or something producing similar observed behavior — that
makes it more likely than chance to see edges that appear
to be copied. For large values of k, the expected value of fk

assuming random ordering of edges becomes very large, and
it is hard for the values observed in the data to lie above the
error bars; we find that for large k, the actual value of fk is
very close to the average fraction among the 100 simulations
and is inside the error bars.

Preferential attachment
We would like to use probabilistic models of network forma-
tion to investigate the following two fundamental properties
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Figure 4: The connected dots indicate the actual value of
fk, the circles indicate the average closure ratio among the
100 simulations, and the plus signs indicate the error bars.
Results for 3 µ-celebrities are shown. The trend is similar
for all other µ-celebrities
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Figure 5: Results from the preferential attachment simula-
tion with N = 200, 000, α = .3, and D = 10. The figure
shows the closure ratio as a function of edge arrival order of
the 10 nodes with highest in-degree.

of directed closure in the data. First, for nodes whose in-
degrees are at the level of µ-celebrities, the closure ratio sat-
urates to a constant f as edges arrive over time. Second, this
constant f is quite different for different µ-celebrities, and it
is not closely related to the total in-degree of the µ-celebrity.

We now compare this with the predictions of a sequence
of increasingly complex models. We begin with a very ba-
sic model — a variant of the standard preferential attach-
ment process, defined as follows (Albert and Barabási 2002;
Newman 2003):

• Fix α ∈ [0, 1], and D,N ∈ N. The graph will have N
nodes labeled 0, 1, 2, ..., N − 1.

• Initially (at t = 0) the graph consists of node labeled 1
with an edge pointing to the node labeled 0.

• At each time step (t = j) node j will join the graph with
D edges directed to nodes chosen from a distribution on
1, 2, ...j − 1. The endpoint of each edge is chosen in the
following way: With probability α the endpoint is chosen
uniformly at random from {1, 2, ..., j − 1}. With proba-
bility 1−α the endpoint is chosen at random from a prob-
ability distribution which weights nodes by their current
in-degree.

We run this process with different values of α, D, and N
and find that preferential attachment does not achieve the de-
sired results for µ-celebrities. In our simulations, only nodes
with very large in-degree have a reasonably large closure ra-
tio, while for other nodes it is essentially zero. For those
nodes with very large in-degree, the closure ratio saturates to
a constant f as edges arrive, and the value of f is different
for different nodes. However, the value of f is monotoni-
cally increasing as the final in-degree of node increases (See
Figure 5).

Through a heuristic calculation we now estimate the ex-
pected closure fraction of a node in a graph generated by the
preferential attachment process.

Let Et be the total number of edges at time t, Nt be the

total number of nodes at time t, dt(j) be the in-degree of
node j at time t,

Ft(j) = {x : ∃e = (x, j) at time t},

dt(S) =
∑
x∈S

dt(x), and

St(j) = α
|Ft(j)|

Nt
+ (1− α)

dt(Ft(j))
Et

.

Note that St(j) is the probability that a particular edge from
node t + 1 is directed to a node k such that there is an edge
from k to j. In other words it is the probability that an edge
from node t + 1 is directed to a node that points to j.

Fix a node j and an edge e coming out of node t + 1. We
would like to calculate the probability of the following event
V : There is another edge e′ = (t + 1, x) created before e
such that x points to j (i.e ∃ edge g = (x, j)). We will
use Ct,e(j) to denote the probability of this event V . Note
that we do not know which of the D edges coming out of
t + 1 the edge e is, or what the destination of e is. Note that
if e is the first edge coming out of t + 1 then the event V
cannot happen; if e is the second edge coming out of t + 1
then Ct,e(j) = St(j), if e is the third edge coming out of
t + 1 then Ct,e(j) = [1− (1−St(j))2], and more generally
if e is the dth edge coming out of t + 1 then Ct,e(j) =
[1 − (1 − St(j))d−1]. Since it is equally likely that e is any
of the D edges coming out of t + 1 we write

Ct,e(j) =
1
D

[1− (1− St(j))] +
1
D

[1− (1− St(j))2] +

· · ·+ 1
D

[1− (1− St(j))D−1]

= 1− 1− (1− St(j))D

DSt(j)
.

If we knew that edge e pointed to node j then the event
V exactly says that e exhibits closure. Therefore if we
want to know the probability that e exhibits closure given
that e = (t + 1, j) we would need to calculate P (V |e =
(t + 1, j)). For the sake of our approximation, we use the
unconditional probability P (V ) = Ct,e(j) instead as our es-
timate of the probability that e exhibits closure. Note that
the quantity Ct,e(j) only depends on j and t, so we de-

fine Ct(j) = 1 − 1−(1−St(j))
D

DSt(j)
. In general, a given edge

e = (x, y) exhibits closure with a probability of approxi-
mately Cx−1(y). If lim

t→∞
Ct(j) = L < ∞ then, for a large

enough T , if t > T then Ct(j) ≈ L. In other words, if t > T
the probability that an edge coming out of node t directed to
node j exhibits closure is approximately L, which in turn is
approximately Ct(j). Therefore, if lim

t→∞
Ct(j) = L < ∞

and our parameter N is large enough then Ct(j) ≈ CN−1(j)
for t > T . Hence, if N is large enough the final closure ratio
of node j is approximately CN−1(j).

In Figure 6 we show that despite the approximations made
in this argument, the calculation is a close fit to the actual
closure ratios.
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Figure 6: The actual closure ratio of each node j generated
by the preferential attachment model with parameters N =
200, 000, α = .3, and D = 10 (dots) and its approximation
by CN−1(j) (plus signs).

Preferential Attachment with Fitness
The fact that preferential attachment produces very few
nodes with non-trivial closure ratios, and that these closure
ratios are closely tied to the in-degrees, indicates the need
for a more complex model. One alternative would be the
use of copying models (Kumar et al. 2000; Vazquez 2000),
where nodes explicitly copy links from other nodes that have
already joined the network. Such a mechanism builds copy-
ing into the model, generally with a tunable parameter that
could be used to control quantities such as the closure ratio.
However, we would like to understand whether non-trivial
closure ratios — and in particular, high levels of diversity
in closure ratios — can also appear in networks arising from
models that do not explicitly define copying as a mechanism.
As a first step in this direction, we investigate an extension
of preferential attachment incorporating the idea that differ-
ent nodes may have different levels of inherent fitness or at-
tractiveness, which affects how strongly they attract links
(Bianconi and Barabási 2001).

Here is how this model works:

• Fix α ∈ [0, 1], and D,N ∈ N. The graph will have N
nodes labeled 0, 1, 2, ..., N − 1.

• Each node also has a fitness parameter fi ∈ (0, 1) chosen
uniformly at random.

• Initially (at t = 0) the graph consists of node labeled 1
with an edge pointing to the node labeled 0.

• At each time step (t = j) node j will join the graph with
D edges directed to nodes chosen from a distribution on
1, 2, ...j − 1. The endpoint of each edge is chosen in the
following way: With probability α the endpoint is chosen
uniformly at random from {1, 2, ..., j−1}. With probabil-
ity 1−α the endpoint is chosen at random from a probabil-
ity distribution which weights each node i by difi, where
di is the node’s current in-degree.
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Figure 7: Results from the preferential attachment with fit-
ness simulation with N = 200, 000, α = .3, and D = 10.
The top figure shows the closure ratio as a function of in-
degree of the 10 nodes with highest in-degree. The bottom
function shows the final closure ratio of each node j (dots)
and its approximation by CN−1(j) (plus signs).
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Figure 8: Closure ratio as a function of In-Degree.

We run simulations of preferential attachment with fit-
ness, with different parameters, and find an improvement
from the simple preferential attachment model. A node’s
final closure ratio is not correlated with the final in-degree
of the node, which matches what we found in our data
set. However, just like in the simple preferential attachment
model, very few nodes have a closure fraction that is non-
trivially larger than 0 (see Figure 7). In particular, for the
nodes that would correspond to µ-celebrities, the fraction is
basically zero. This is not consistent with the data, which
shows that µ-celebrities can have very large closure ratios.

We find that the heuristic calculation for the closure ratio
we derived for the preferential attachment model is very ac-
curate for preferential attachment with fitness as well. Fur-
thermore, from the calculation we see that for a node j the
term dt(FN−1(j)) (the sum of the in-degree of nodes that
point to j) is the most important in determining the closure
ratio when α is small. For preferential attachment with fit-
ness, the closure ratio of a node j is much more correlated
with dt(FN−1(j)) than with the in-degree of j (see Figure
7). This is also the case for the µ-celebrities in our data set
(see Figures 8 and 9), which means that in determining a
user’s closure ratio, the more important variable seems to be
not the number of followers the user has but the total number
of followers of those who follow the user.

Preferential Attachment with Communities
The previous model, incorporating fitness, manages to pro-
duce heterogeneity in the closure ratios, but it still only pro-
duces very few nodes for which the closure ratios are non-
trivial. We now present a model in which many nodes will
have non-trivial closure ratios.

The model is preferential attachment with communities:
we assume that each node belongs to a particular community
of nodes, and the node is more likely to attach to nodes from
its own community than to nodes from other communities.
Specifically:
• Fix α ∈ [0, 1], β ∈ [.5, 1], and C,D, and N ∈ N. The

graph will have N nodes labeled 0, 1, 2, ..., N − 1 and
there will be C communities.
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Figure 9: Closure ratio as a function of the Sum of In-Degree
of Incoming Nodes.

• Initially (at t = 0) the graph consists of the C communi-
ties, each with two nodes, one pointing at the other.

• At each time step (t = j) node j will join the graph and
will be assigned a community uniformly at random. Then
j will create D edges directed to nodes chosen from a
distribution on 1, 2, ...j − 1. The endpoint of each edge
is chosen in the following way: With probability β the
endpoint will be a node from the same community as j;
with probability 1 − β the endpoint will be chosen from
any of 1, 2, ...j − 1. With probability α the endpoint will
be chosen preferentially (i.e. at random from a probabil-
ity distribution which weights nodes by their current in-
degree) and with probability 1 − α the endpoint will be
chosen uniformly at random from the set of nodes already
determined.

Simulations with different parameters show that this
model generates nodes whose closure ratios converge as in-
degree increases (see Figure 10), and the final fraction is not
closely related to the in-degree as it was in the case of simple
preferential attachment. Furthermore, the nodes that would
correspond to a µ-celebrity level of in-degree can have rea-
sonably large closure ratios.

It is also interesting to note that the sum of a node’s fol-
lowers’ in-degrees, an important parameter in the previous
two models, still plays a role here, but with a twist: as Fig-
ure 11 shows, a node’s closure ratio is more closely corre-
lated with the sum of in-degrees of the followers from its
own community than with the sum of the in-degrees of all
its followers. It would be interesting to explore this quan-
tity on the Twitter data, using different approximations of
community structure in Twitter.

Conclusion
We have studied the process of directed closure in informa-
tion networks, developing a definition and methodology for
evaluating it, and providing evidence for directed closure in
the follower network of Twitter. We also found that the ex-
tent of directed closure varies considerably between the sets
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Figure 10: The closure ratio as a function of in-degree for
the 10 nodes with highest in-degree. Preferential attachment
with communities simulation with N = 200, 000, α = .3,
β = .8, C = 1, 000, and D = 10.

Figure 11: Results from the preferential attachment with
communities simulation with N = 200, 000, α = .3,
β = .8, C = 1000, and D = 10.

of followers of different popular users. A sequence of mod-
els generalizing the principle of preferential attachment pro-
vide some explanation for our findings, and identify a more
subtle parameter — the sum of the in-degrees of one’s fol-
lowers — that is related to the extent of directed closure.

It is an interesting direction for further work to try under-
standing better the causes of heterogeneity in the closure ra-
tios of micro-celebrities on Twitter, and the extent to which
identifying communities in the Twitter network structure can
help evaluate the more detailed predictions of preferential
attachment with communities. It will also be interesting to
explore comparative analyses of these measures on other in-
formation networks.
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