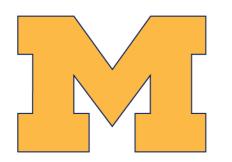
Event-Driven Analysis of Crowd Dynamics in the Black Lives Matter Online Social Movement

Hao Peng haopeng@umich.edu



School of Information University of Michigan

Protest for Catalonia's independence from Spain [Bilbao, Spain, 09/16/2017]

Online Social Movements

- Online and offline scenarios are often intertwined.
- Online participation can be **triggered** by offline events.
- Offline protests can be **organized** in online platforms.

Related Work

- Arab Spring 2010; Egyptian Revolution 2011; Occupy Wall Street 2011
- Information diffusion; Recruitment process; Movement framing (Starbird and Palen, 2012; González-Bailón et al., 2013; Stewart et al., 2017)
- Research show that crowd behavior are often linked to key offline events.

(Spiro et al., 2016; De Choudhury et al., 2016; Varol et al., 2014)



How do different types of offline events affect crowd behavior in online social movements?

Why would events matter?

https://www.thenation.com/article/can-black-lives-matter-win-in-the-age-of-trump/

Offline events — Crowd behavior online

police violence events heightened protests

Sustained participation and Communication

Dataset

Online

- 53 BlackLivesMatter related hashtags;
- 36M tweets (each contains at least one #);
- 27M retweets;
- Time range: 01/02/2014 05/10/2015;

Offline

- 5 most prominent police violence events;
 - (Eric Garner, Michael Brown, Tamir Rice, Walter Scott, Freddie Gray)
- Protest events: <u>elephrame.com</u>;

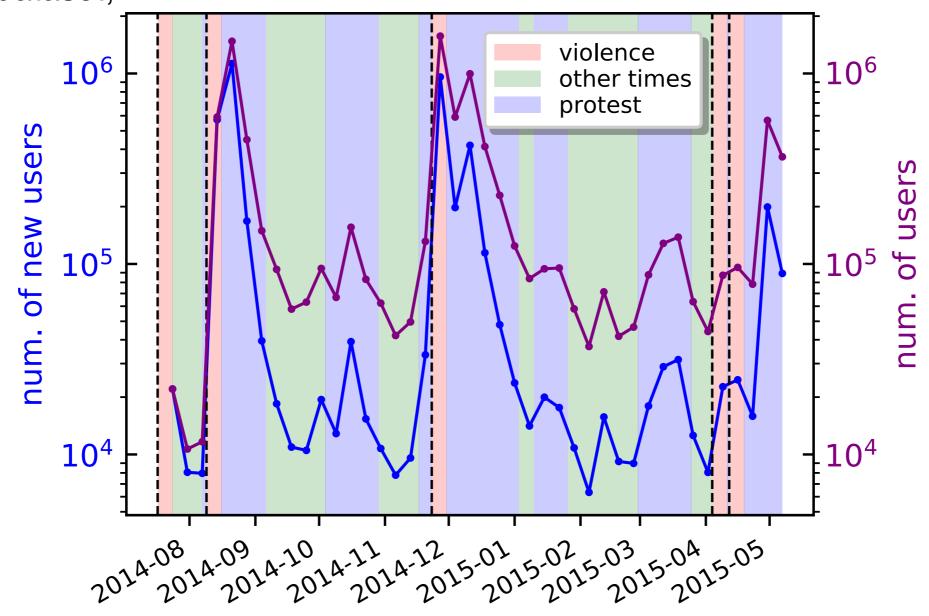
Event categorization of the online dataset

Defining a time window w around each event e:

- I. violence period: $[t_e, t_e + w]$;
- 2. protest period: $[t_e w, t_e + w]$;
- 3. combine adjacent periods with the same event type;
- 4. violence overrides protest in case of overlap;
- 5. let w = one week (Gallagher et al., 2018)
- activities often follow violence events (unexpected);

Event categorization of the online dataset

- · the background bins: created using offline events;
- two line plots: calculated based on the online dataset;



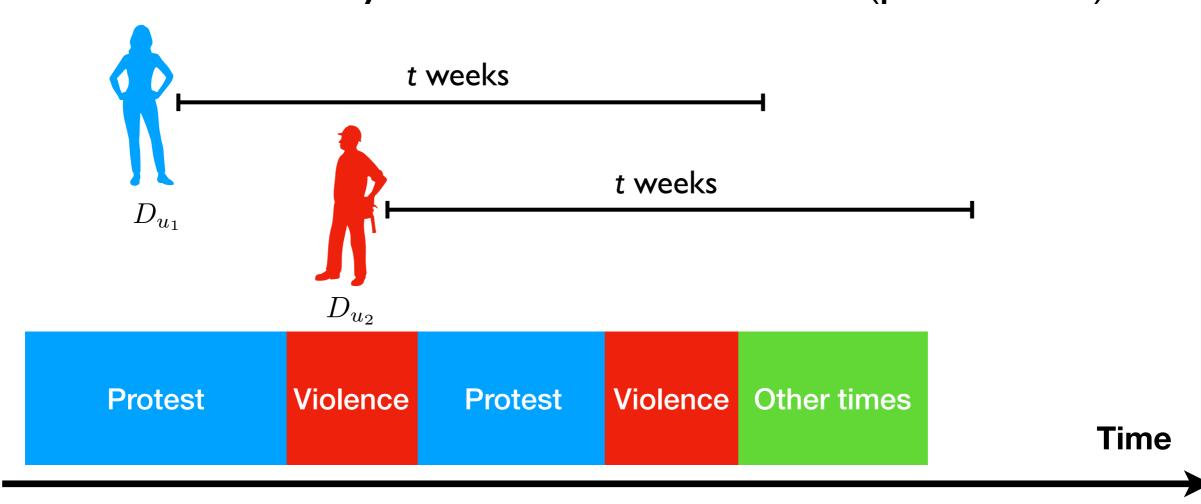
Research Questions

How arriving at the movement during a type of event is related to continued user participation in the BLM OSM?

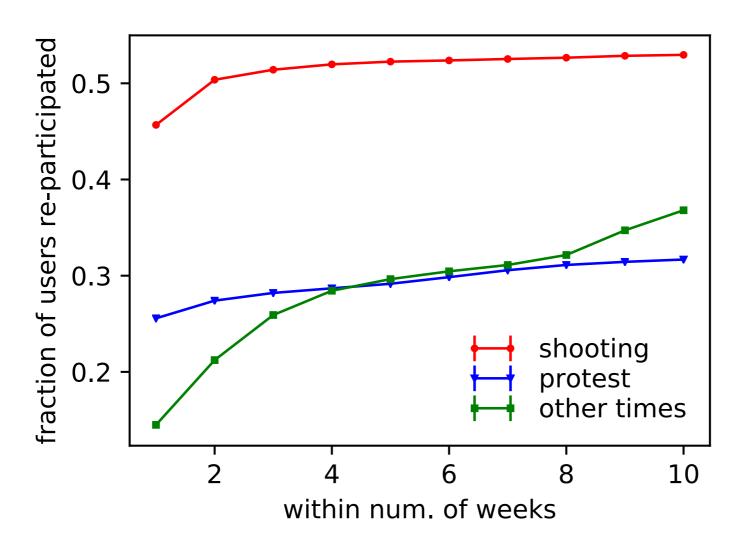
User Participation

Measure future commitment along three dimensions:

- I. posted another tweet or not (binary);
- 2. num. of tweets posted (frequency);
- 3. num. of days with at least one tweet (persistence);



How likely are users combing back?



need controls!

Regression framework

- each user is a data point (3.8 million);
- focus on the event type of their first tweets;
- control for temporal factors and user attributes;
 for t in [1, 10]:
 - for each measure y:
 - use y as the dependent variable;

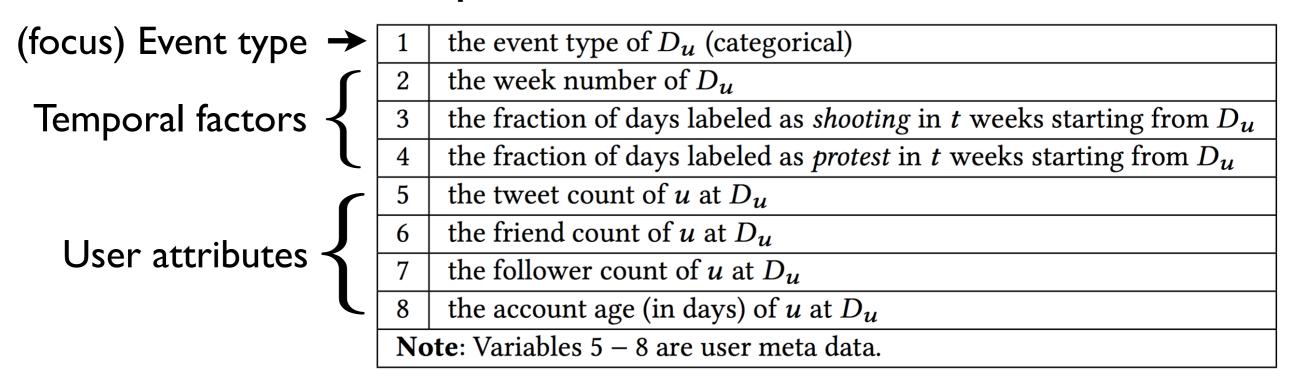
$$logit(p(y=1)) = \beta_1 I + \sum_{k=2}^{k} \beta_k x_k + \epsilon$$

$$log(y+1) = \beta_1 I + \sum_{k=2}^{k} \beta_k x_k + \epsilon$$
(1)

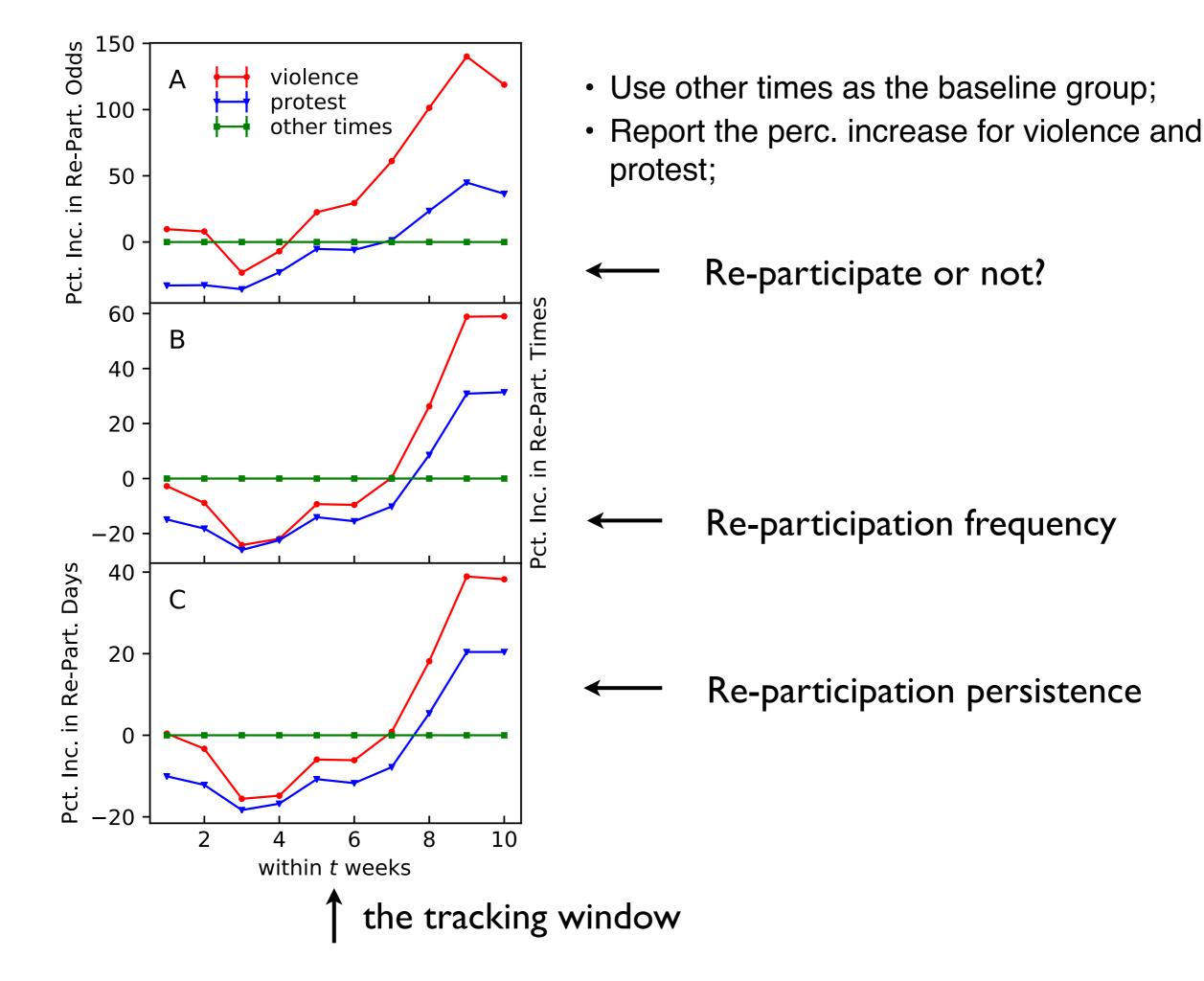
- the same set of control variables;
- independent variables: event type + controls;

Regression framework

Independent Variables



Focus is not the prediction accuracy, but the coefficients of Events;



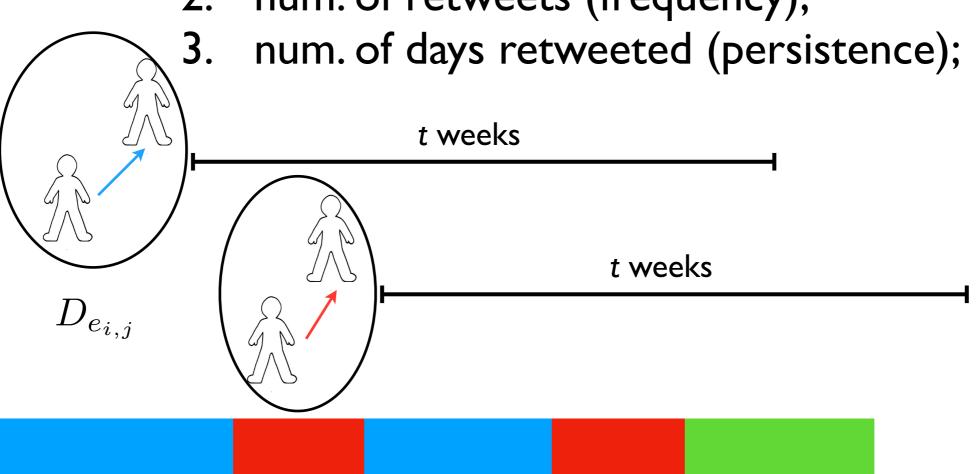
Research Questions

How starting a tie during a type of event is related to its future interactions?

Social Interactions

Measure tie strength along three dimensions:

- retweet again or not? (binary);
- num. of retweets (frequency);



Protest

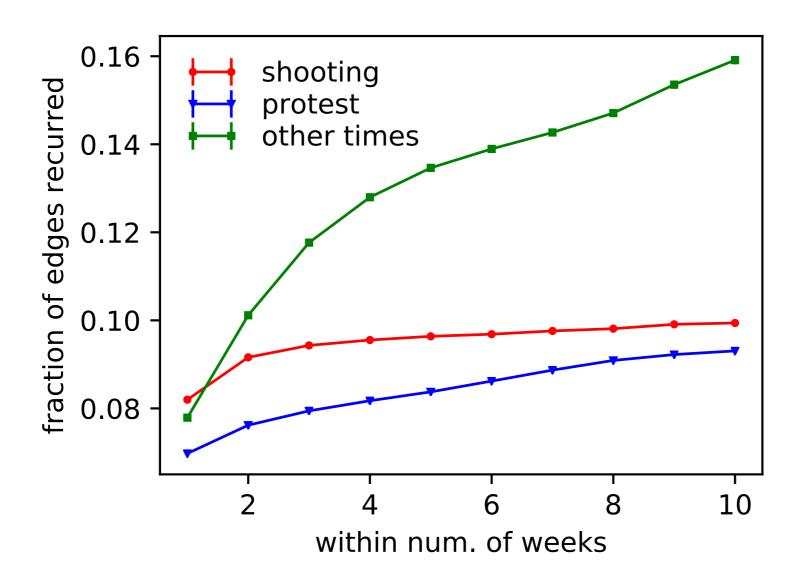
Violence

Protest

Violence Other times

Time

How likely do interactions recur?



need controls!

Regression framework

- each pair of users is a data point (17 million);
- focus on the event type of their first retweets;
- control for temporal factors and user attributes;

```
for t in [1, 10]:
for each measure y:
```

- use y as the dependent variable;
- the same set of control variables;
- independent variables: event type + controls;

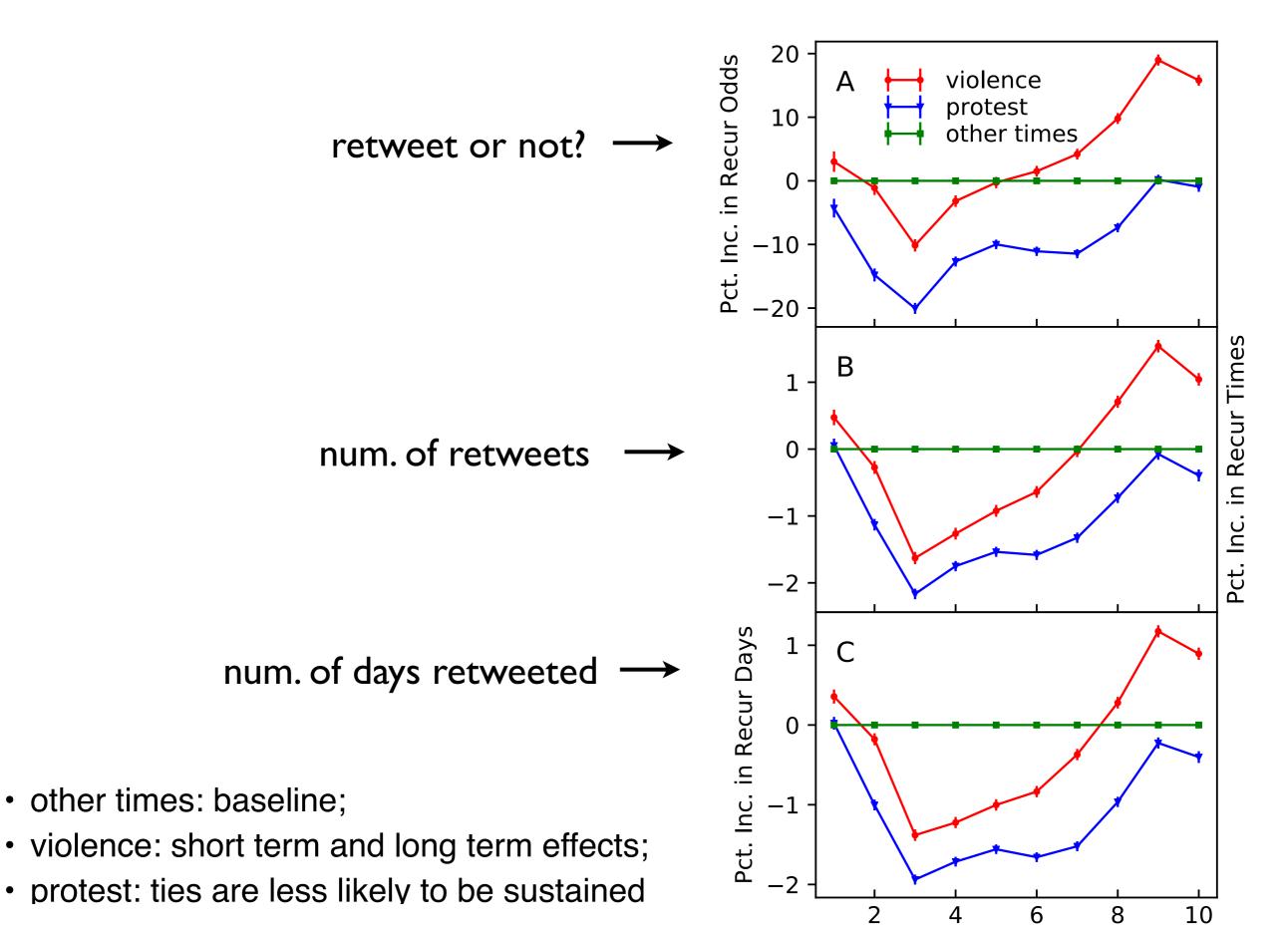
Regression framework

(focus) Event type →

Temporal factors

User activities prior interactions

	1	the event type of $D_{e_{i,j}}$
	2	the event type of D_{u_i}
	3	the event type of D_{u_j}
	4	the week number of $D_{e_{i,j}}$
•	5	the # protest tweets of u_i in $[D_0, D_{e_{i,j}}]$
	6	the fraction of (5) in <i>shooting</i>
	7	the fraction of (5) in <i>protest</i>
	8	the # protest tweets of u_j in $[D_0, D_{e_{i,j}}]$
	9	the fraction of (8) in <i>shooting</i>
	10	the fraction of (8) in <i>protest</i>
	11	the times u_i has retweeted others in $[D_0, D_{e_{i,j}}]$
	12	the times u_i has been retweeted by others in $[D_0, D_{e_{i,j}}]$
	13	the times u_j has retweeted others in $[D_0, D_{e_{i,j}}]$
	14	the times u_j has been retweeted by others in $[D_0, D_{e_{i,j}}]$
	15	the times u_j has retweeted u_i in $[D_0, D_{e_{i,j}}]$
	16	the # users u_i and u_j have retweeted in common in $[D_0, D_{e_{i,j}}]$
	17	the # protest tweets of u_i in t weeks from $D_{e_{i,j}}$
	18	the # protest tweets of u_j in t weeks from $D_{e_{i,j}}$
	19	the fraction of days labeled as shooting in t weeks from $D_{e_{i,j}}$
	20	the fraction of days labeled as <i>protest</i> in t weeks from $D_{e_{i,j}}$
	Not	e: Variables 5 – 20 are calculated based on our dataset.



within t weeks

Conclusion

- police violence and protest events have both long term and short term effects on user commitment in the BLM OSM.
- interactions formed during violence events are more likely to be sustained than those formed during other times, with the latter expressing more engagement than the protests group.
- Implication for policymakers, movement organizers, and online social movement observers. e.g. encourage newcomers during other times.

Collaborators

Ceren Budak

Daniel M. Romero

Questions?