
Original Paper

Comparing the Data Quality of Global Positioning System Devices
and Mobile Phones for Assessing Relationships Between Place,
Mobility, and Health: Field Study

Robert Goodspeed1, PhD; Xiang Yan1, MUP; Jean Hardy2, MSI; VG Vinod Vydiswaran2,3, PhD; Veronica J Berrocal4,
PhD; Philippa Clarke5,6, PhD; Daniel M Romero2, PhD; Iris N Gomez-Lopez6, PhD; Tiffany Veinot2,7, PhD
1Urban and Regional Planning Program, Taubman College of Architecture and Urban Planning, University of Michigan, Ann Arbor, MI, United States
2School of Information, University of Michigan, Ann Arbor, MI, United States
3Department of Learning Health Sciences, Medical School, University of Michigan, Ann Arbor, MI, United States
4Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
5Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
6Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
7Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, United States

Corresponding Author:
Robert Goodspeed, PhD
Urban and Regional Planning Program
Taubman College of Architecture and Urban Planning
University of Michigan
2000 Bonisteel Blvd
Ann Arbor, MI, 48109
United States
Phone: 1 734 615 7254
Email: rgoodspe@umich.edu

Abstract

Background: Mobile devices are increasingly used to collect location-based information from individuals about their physical
activities, dietary intake, environmental exposures, and mental well-being. Such research, which typically uses wearable devices
or mobile phones to track location, benefits from the growing availability of fine-grained data regarding human mobility. However,
little is known about the comparative geospatial accuracy of such devices.
Objective: In this study, we compared the data quality of location information collected from two mobile devices that determine
location in different ways—a global positioning system (GPS) watch and a mobile phone with Google’s Location History feature
enabled.
Methods: A total of 21 chronically ill participants carried both devices, which generated digital traces of locations, for 28 days.
A mobile phone–based brief ecological momentary assessment (EMA) survey asked participants to manually report their location
at 4 random times throughout each day. Participants also took part in qualitative interviews and completed surveys twice during
the study period in which they reviewed recent mobile phone and watch trace data to compare the devices’ trace data with their
memory of their activities on those days. Trace data from the devices were compared on the basis of (1) missing data days, (2)
reasons for missing data, (3) distance between the route data collected for matching day and the associated EMA survey locations,
and (4) activity space total area and density surfaces.
Results: The watch resulted in a much higher proportion of missing data days (P<.001), with missing data explained by technical
differences between the devices as well as participant behaviors. The mobile phone was significantly more accurate in detecting
home locations (P=.004) and marginally more accurate (P=.07) for all types of locations combined. The watch data resulted in
a smaller activity space area and more accurately recorded outdoor travel and recreation.
Conclusions: The most suitable mobile device for location-based health research depends on the particular study objectives.
Furthermore, data generated from mobile devices, such as GPS phones and smartwatches, require careful analysis to ensure
quality and completeness. Studies that seek precise measurement of outdoor activity and travel, such as measuring outdoor physical
activity or exposure to localized environmental hazards, would benefit from the use of GPS devices. Conversely, studies that aim
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to account for time within buildings at home or work, or those that document visits to particular places (such as supermarkets,
medical facilities, or fast food restaurants), would benefit from the greater precision demonstrated by the mobile phone in recording
indoor activities.

(JMIR Mhealth Uhealth 2018;6(8):e168)   doi:10.2196/mhealth.9771
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Introduction

Background
Significant relationships between health and the places in which
we live and work are now widely acknowledged, with
associations having been found for health behaviors ranging
from diet to physical activity to the use of health care services
[1,2]. In addition, location-based data acquired from mobile
devices can be used to assess physical activity [3], exposures
to hazardous substances [4], and symptoms of mental health
conditions such as depression [5-8]. Accordingly, there is
growing interest in the use of location-tracking devices as a data
collection tool for health research.

Researchers investigating relationships between health, place,
and mobility require location-tracking devices, which are both
acceptable to users and accurate. To date, a variety of pilot and
feasibility studies have examined user acceptance of devices
such as wearable activity trackers [9,10], dedicated global
positioning system (GPS) devices [11], and GPS-enabled mobile
phones [12,13]. Although this research generally shows
reasonable acceptance among varied user groups, there remain
gaps in understanding the spatial accuracy of each of these
devices, particularly those that are available on the consumer
market and thus could facilitate population-level research.
Therefore, building on prior health informatics research
examining the accuracy of other types of devices used in
research [14,15], we compared the accuracy of two widely
available location-tracking devices that determine location using
two different technical approaches (described further below).

One of the key approaches adopted in health research that uses
location-tracking data focuses on characterizing the spaces in
which participants typically spend their time; this is typically
used to overcome the limitations of determining participant
location solely based on the place of residence [16]. This is
important as recent research has shown that environmental
characteristics of such nonresidential places are associated with
health-related outcomes, such as self-rated health [17] and
dietary intake [18-20]. Therefore, a growing number of studies
on health, place, and mobility are using an analytical approach
that involves constructing an activity space for each participant
(eg, [21-24]). This concept, proposed by space-time geographers,
describes the portion of the environment actually used by an
individual to fulfill activities and travel between locations
[25-27].

Activity space construction requires detailed spatial information
from participants, ideally records of travel through the
environment collected in real time. Accordingly, researchers
have used GPS devices to study the relationship between the

environment and physical activity [28] and food environments
and eating [29]. However, GPS devices pose a set of well-known
research challenges: commercially available devices can have
limited battery life and nonintuitive interfaces, are often
physically bulky, and lose satellite signals indoors or in dense
urban environments [30-32]. Mobile phones offer one potential
alternative to dedicated GPS devices; they provide integrated
location services through a combination of GPS, cellular tower
triangulation, and geolocation of Wi-Fi networks. As mobile
phone location information is acquired through multiple
methods, these devices work in a variety of physical contexts
and may result in more accurate data about activities taking
place within and close to buildings. In addition, mobile phones
may have other benefits such as greater acceptability by study
participants which, in turn, may reduce data loss [13]. Although
dedicated apps can collect location data, Android devices can
record location information automatically via the integrated
Google Location History feature, making the collection and
analysis of mobility data feasible at the population level.
Tracking studies such as this one raise important ethical
concerns, such as those around the privacy of the data collected
[33]. As described further below, we took typical steps to obtain
informed consent and protect the privacy of the data collected.
Although privacy is not the primary focus of this study, we
briefly comment on this issue in the Discussion.

Objectives
In this study, we evaluated the quality of location data generated
from mobile phones and a wearable GPS device, providing a
novel direct comparison. The three specific comparative aspects
of the mobile devices that we examined in this study were (1)
data loss experienced, (2) accuracy of the gathered data, and
(3) activity spaces generated using the data. We focused on
people with diabetes, hypertension, and chronic kidney disease
as spatially sensitive health behaviors such as physical activity,
diet, medication, and health care appointment adherence are
important drivers of outcomes in people with these conditions
(eg, [34-36]).

Methods

Participant Recruitment
This study was conducted as part of a larger research project
focused on big data methods for characterizing the relationship
between place of residence and health, with a focus on new data
sources such as social media [37,38] and location tracking using
mobile devices. This study focused on diabetes, hypertension,
and kidney disease, as these conditions often co-occur [39] and
have outcomes that are influenced by health behaviors such as
eating, physical activity, and treatment adherence [40-42].
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Moreover, prior research has shown that these behaviors are
related to neighborhood contextual features such as the food
environment, physical activity resources, and local health care
services [43-47]. Accordingly, location-tracking devices hold
particular promise for studying the relationship between place,
health behavior, and health outcomes in this patient group.
Participants were recruited through a university portal for
research participants at the University of Michigan. Eligible
participants were 18 years or older and self-reported at least one
of these conditions.

Device Deployment
Participants were provided with two consumer-oriented
location-tracking mobile devices to carry for 28 days, although
some kept the devices for longer based on our ability to schedule
a final interview with them. We selected two mobile devices
for this study—a GPS-enabled device and a mobile phone with
location tracking enabled. The GPS device used was a Garmin
fēnix 2 GPS Watch (henceforth referred to as the watch),
whereas the mobile phone was a Samsung Galaxy S5
(henceforth referred to as the phone). As the phone is an Android
device, it has an integrated Google Location History feature
that was enabled to track locations as part of the study. These
devices were chosen to represent consumer-oriented
technologies that are widely available at reasonable price-points
(US $399 for the watch and US $650 for the mobile phone
without a contract) and that use the two prevalent methods of
determining user location: GPS satellites as opposed to mobile
phones’ use of a combination of cellular towers, Wi-Fi networks,
and GPS triangulation.

Participants were asked to keep the devices switched on for at
least 8 hours daily, ideally from the time they awoke until they
went to bed. Each device was enabled to capture digital traces
of participant location. The watch was set to the Smart
default-sampling rate, which records data every 4 to 7 seconds.
According to product forums, the sampling rate for Location
History is variable and depends on factors such as the strength
of available signals, battery strength, and whether the Google
Maps app is running in the foreground or background. They
were asked to keep the devices charged and synchronize data
from the watch to the mobile phone every day. Participants were
trained in the use of the devices and were given instruction cards
as a follow-up reminder. They were also given a phone number
for the technical support provided by the research team, and the
devices were returned at the end of the study. Participants earned
US $3.57 for each day of data they uploaded, up to a maximum
of US $100 for the full 28 days. The study received ethical
approval from the Health Sciences and Behavioral Sciences
Institutional Review Board at the University of Michigan
(HUM00098270).

Data Collection Methods
In addition to the spatial information, a brief ecological
momentary assessment (EMA) survey configured using the
Personal Analytics Companion (PACO) software for Android
phones presented two free-text survey questions to participants
at 4 random times in a given day: “where are you?” and “what
are you doing?” and prompted participants to take a photograph
of their location using the mobile phone. Participants also took

part in qualitative interviews and completed surveys twice during
the study period—once after the first 14 days and then at the
end of the 28-day period. In these two interviews, participants
were asked about their experience using the devices and to
review the phone and watch trace data on Web-based platforms
designed for this purpose (Google Maps and the online website,
Garmin Connect) for the 2-4 most recent days (the range
depended on whether data were missing for recent days) and to
compare the data with their memory of their activities on those
days. Data were collected from summer to fall of 2015.

Analysis Methods
The analyses presented here rely on three data sources: (1)
digital location information logged by each device, (2) results
of the brief EMA survey that inquired about participants’
locations and activities, and (3) interview results concerning
reasons for data loss. The phone data resulted in a line
representing travel routes, with selected points recorded along
the route corresponding to destinations. On the other hand, the
watch data consisted of a route and regular waypoints. Due to
this difference, only the route (or trace) information from each
device was used in this analysis. Points contained in the Keyhole
Markup Language files that are exported from the Google
Location History service are named according to the assumed
mode of travel (eg, “Walking,” “Driving”) or specific destination
(eg, “Olson Park”) assigned to the user by Google’s software.
In addition, additional information such as raw data can be
viewed, but not downloaded, on the Location History website.
Either may be useful for researchers. Without waypoints for the
phone data, standard smoothing techniques could not be applied
to the phone data.

Missing Data Analysis
Although participants were asked to carry both devices for 28
days, the number of days in which they acquired 8 hours of data
varied. Data completeness was evaluated by calculating the
proportion of missing data days, defined as the number of days
in which the participant did not collect 8 hours of data divided
by the participant’s number of days in the study. As an additional
measure of the amount of data collected, the number of days
where any spatial information was collected was also reported.

The interview data containing user evaluations of the accuracy
of the data contained user reflections on reasons for missing or
incorrect data, which were coded using structural coding [48].
These coded data were compared with trace data for each
participant for whom there was missing data, to identify the
reasons for the specific missing data episodes. These reasons
were then grouped into descriptive categories [48].

Geographic Information System Data Procedures
As described, the EMA surveys included a free-text field for
the participants’ current location. Among the survey responses,
30.4% could be converted into a street address, including the
terms “home” and “work,” or another identifiable location.
Other locations included a park or campsite, business, theater,
home of friend, health care organization, library, church, and
gym. In other cases, respondents either provided no response
to the other surveys or responses which could not be mapped.
This resulted in 1375 geocoded destination points. Among these,
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461 were collected on days in which spatial information was
available from both the devices. The distance between the route
data collected for that day and the associated survey locations
was then computed using the spatial join tool in ArcGIS Desktop
10.3.1. The spatial join function was run using the “closest”
option, which records the nearest location feature from either
the phone or watch data to the point mapped from the PACO
survey responses. The mean distances were then computed for
each location category and for all locations combined.

Activity Space Analysis
Multiple methods have been proposed for converting raw spatial
information into a representation of an activity space [22], such
as the use of Census Tracts [23,49], the characteristics of known
destinations [24], or constructing standard deviational ellipses
from location information [50,51]. Tailored approaches include
travel time polygons describing an area of potential travel, road
network buffers of routes to regular destinations, or daily path
areas constructed from actual routes taken [18,52]. We selected
the daily path method because it utilizes the detailed route
information collected from the devices and results in a
representation of actual (vs potential) travel during the study
period.

Therefore, an activity space was constructed using the daily
path area method, which buffers digital location traces with
buffer distance depending on the geographic context and study
aims [18,22]. The activity space analysis was conducted for
comparison days only, where data were available from both
devices. The average number of days per participant was 19.2,
with a range of 5 to 33. A buffer was applied to the data for
those days. We used 400 m as the buffer distance because it can
be considered as the minimum walking distance to reach a
destination in an urban environment [53,54]. The buffer was
then clipped to the participant’s home county to exclude
nonroutine activities such as vacation travel. The total area of
the resulting polygon was then computed. No changes or
corrections to either data sources were made for this analysis,
except for the removal of one obviously errant line from
participant 14’s phone data, described further below.

In the activity space analyses, a kernel density function can be
used to calculate a continuous surface from a set of known
locations [55]. In a geographic information system, a kernel
density function calculates a magnitude-per-unit area from a
point or line feature using a kernel function to fit a smoothly
tapered surface. The surface resulting from this analysis can be
interpreted as a probability surface similar to that presented in
the study by Downs et al [56]. We used this approach because
unlike the buffering method, a kernel density function takes
into account multiple traces in the same area, weighing them
differently depending on the shape of the density function
employed and the kernel density function bandwidth. In addition,
unlike the buffer that delineates a specific area, the kernel
density results in a continuous representation. As our purpose
was to compare the data obtained from the 2 devices, the output
of this analysis shows the difference between the density maps
for each device. The method included the following steps: (1)
clip the trace data to the participant’s home county, (2) compute
the kernel density with a search radius of 400 m, (3) rescale the

values in the density surface resulting from the phone and watch
data so that they total to 1, and (4) compute the difference
between the density surfaces.

Results

Characteristics of Participants
As shown in Table 1 below, 57% (12/21) of participants were
women, and the mean participant age was 52.4 (SD 11.36) years,
with a range of 33 to 74. Majority of the participants (17/21,
81%) had a bachelor’s degree or higher and just over half were
employed. Two-thirds of the population were white and about
one-third had another racial or ethnic identity. In this sample
of chronically ill participants, 76% (16/21) had hypertension,
62% (13/21) had diabetes, and 19% (4/21) had chronic kidney
disease.

Missing Data Analysis
As shown in Table 2, the watch resulted in a much higher
proportion of missing data days, primarily because of a large
number of days on which data were collected for less than 8
hours (Z=3.920, P<.001). However, considering all days with
any amount of valid trace data, the phone resulted in only
slightly more data than the watch (t20=0.460, P=.65).

Interviews with the study participants revealed that the
differences in missing data were explained by technical
differences between the devices as well as participant behaviors.
Explanations for these differences revealed in the interviews
included the following: participants forgetting to initiate data
collection at the beginning of the day on their GPS watch, the
GPS watch not being able to locate satellites in certain buildings,
removing the watch during activities participants perceived to
be unsafe for the watch (eg, sports and kitchen work), and
troubles syncing the watch data to the mobile phone so that it
could be recorded.

Spatial Accuracy Analysis
The mean distance from the points obtained from self-reported
participant location based on the EMA survey data and the
spatial data from each device was lower for the phone than for
the watch overall and for each of the four categories considered
(Table 3). The destination category with the smallest distance
was home, followed by business. The two devices yielded
marginally significantly different mean distances for all points
(P=.07). When stratified by specific categories, the only
statistically significant difference between the two devices has
been found for home locations (P=.004).

Activity Space Analysis
The resulting daily path area from the buffer analysis from both
devices was much larger for the phone than for the watch. As
shown in Table 4, the average activity space for the phone was
18,084.74 ha, whereas it was 10,494.57 ha for the watch. A
two-sample t test with unequal variances found the difference
is statistically significant at the 99% level (t20=3.164, P=.003).
On average, the watch showed 42.0% fewer hectares in
participants’ activity spaces.
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Table 1. Participant demographics and technology ownership (N=21).

n (%)Characteristics

Gender

12 (57)Female

9 (43)Male

Racea

5 (24)Black or African American

17 (81)White or European American

1 (5)Native American or Native Hawaiian or Pacific Islander

1 (5)Other

Ethnicity

3 (14)Hispanic or Latino

18 (86)Non-Hispanic or Latino

Education

3 (14)Some college

1 (5)Associate’s degree

6 (29)Bachelor’s degree

8 (38)Master’s degree or PhD

3 (14)Professional degree (eg, JD and MD)

Employmenta

8 (38)Full-time employment (30+ hours per week)

3 (14)Part-time employment (<30 hours per week)

2 (9)Student

4 (19)Unemployed

3 (14)Disabled

4 (19)Retired

Health conditionsa

16 (76)Hypertension

13 (62)Diabetes

4 (19)Chronic kidney disease

aMore than one response possible.

Table 2. Missing data analysis results.

P valuet value (df)Z valueWatchPhoneMeasure

<.001N/Aa3.9200.540.03Proportion of missing data days (<8 hours)

.650.460 (20)N/A22.223.5Mean valid data days

aN/A: not applicable.
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Table 3. Spatial accuracy analysis.

ComparisonWatch distance (m), mean (SD)Phone distance (m), mean (SD)Categories

P valuet value (df)N

.004−2.649 (351)352106.2 (576.9)24.6 (38.6)Home

.17−0.954 (80)812831.9 (3821.7)2318.0 (2982.1)Work

.38−0.315 (18)19804.2 (1549.4)694.3 (1484.5)Business

.19−0.936 (8)91240.7 (2778.8)360.4 (493.4)Other

.07−1.470 (460)461636.0 (2023.5)461.7 (1547.1)All

Table 4. Activity space comparison from travel route buffer.

Difference (%)Difference (ha)Watch area (ha)Phone area (haa)Comparison daysParticipant ID

−78.920,895.61557626,47220S11b

−71.023,027.38942632,45412S14

−60.65803.163780958311S7

−57.016,148.1212,19228,34124S25

−56.24582.34357081534S6

−52.015,199.0814,05429,25332S18

−46.414,073.4216,23630,31018S15

−45.69113.3110,85819,97111S4

−43.211,598.9715,25626,85521S23

−38.54166.75664410,81114S3

−38.36883.8911,10617,99033S22

−35.45547.2810,10515,65217S5

−35.33264.865974923921S13

−24.87379.3422,34629,72629S12

−24.23618.0611,34114,95920S2

−17.11014.764922593717S21

−16.93949.8319,41423,36429S26

−12.01334.41982011,15432S24

−7.11458.2919,03520,4946S17

−6.6227.60324534727S27

−1.9107.145485559213S9

−42.07590.1710,494.5718,084.74—Mean

a1 ha=10,000 m2.
bS: subject.

Illustrative examples of this analysis are shown in the first two
columns of Figure 1 for participants with extreme (S14 and
S23) and minor differences (S26 and S9) in daily paths. To
facilitate visual comparison at the same map extent, the 3
participants from outside of Washtenaw County are excluded.
This figure illustrates that the watch traces produced activity
surfaces with travel closely following highway and street routes.
The greater buffer areas produced by the phone are explained
by two primary issues: the inclusion of activities in the phone
data, which are missing from the watch data, and the phone’s

inaccurate representation of highway travel, which resulted in
straight lines that artificially inflated the activity space size. The
kernel density analysis was conducted to create a more nuanced
representation of the differences between the patterns, which
can better account for the many overlapping features. The result
is shown in the third column of Figure 1, and areas where the
phone data resulted in greater density than the watch are shown
in green and the reverse pattern in purple. The map can be
interpreted as visualizing areas where the participant is more
likely to be only because of the choice of device.
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Figure 1. Illustrative activity space data for 4 participants residing in Washtenaw County. The third column shows the difference between the density
surfaces computed for the watch and phone data; higher watch density is shown in purple and higher phone density in green. Base map source: Esri
[57].
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Figure 2. Trace data collected for participant S12 on one study day, illustrating greater spatial detail in watch data (purple) compared with phone data
(green) for outdoor exercise (neighborhood walk). Source: Google Earth [58].

The spatial quality of information about outdoor activities, in
particular, was higher for the watch than for the phone. For
example, as shown in Figure 2, participant S12 described
engaging in evening walks near his home, at least one of which
was clearly recorded in the watch but not in the phone data.

Discussion

Principal Findings
Overall, the phone resulted in a lower proportion of missing
data days. In addition, the phone data had a lower mean distance
to the known location points and for each of the categories
examined, although only the differences in distance to home
was statistically significant. The activity space analysis reveals
that the phone generated larger activity spaces than the watch.
This was because of higher missing data for the watch and
inaccurate recording of travel by the phone, which erroneously
enlarged the activity space. The watch data resulted in much
more accurate data when traveling outdoors, such as riding in
an automobile or walking.

Comparisons With Prior Work
Our research showed that there were activities that were reflected
in the phone data but not recorded by the GPS watch. As
described in our related work [13], one factor contributing to
this difference was user acceptance; as the phone is less
obtrusive and it provided other benefits to the participants, they
were more likely to carry it. In addition, the participants had
difficulty in using the watch, particularly when syncing the
device to store data for the study. Unlike the watch that must
be synced daily, phone data were logged to a remote server
automatically. Although using an alternative GPS device may
reduce or eliminate some of these issues, other factors related
to the GPS infrastructure, such as the delay in obtaining a

satellite signal, would still hinder the widespread use of GPS
devices for location tracking. Prior feasibility studies with GPS
devices for location tracking in health have surfaced similar
issues in use of such devices [32,59]. Moreover, previous work
shows that GPS devices typically only function outdoors, where
they can connect with multiple satellites, and perform best in
places away from dense buildings [10,11].

The spatial accuracy analysis highlights one strength of the
phone, which is the improved quality of the collected spatial
information about locations in buildings, probably because of
the phone’s use of Wi-Fi signals to determine location. Future
research could further investigate this issue for specific location
categories. Although previous work has shown that a mobile
phone–based app can generate accurate spatial data [21], this
is the first study, to our knowledge, to empirically compare such
devices with other prevailing technologies. Moreover, this study
focused on a technology that is available on many mobile phones
without requiring the downloading of additional software
(Google Location History). The widespread adoption of this
technology means that it holds special promise for
population-level monitoring and surveillance.

Previous research on the accuracy of location-tracking devices
has focused on comparing different types of GPS devices
[30,31,60]. This is the first study, to our knowledge, that
compares GPS technology with the now-ubiquitous forms of
location tracking available in mobile phones. This permitted
the identification of sources of error in mobile phone data, which
are likely to be increasingly used in research because of their
ubiquity.

Implications for Researchers
The main conclusion we draw from the study is that there are
important trade-offs between the use of these two types of
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devices in health research. Participants successfully collected
more data with the phone, with less data loss. In addition, our
analysis showed that the phone traces were closer to known
destination points than the watch data. However, these benefits
came with a significant trade-off, namely, the straight lines and
inaccuracies for outdoor activities, described earlier for the
phone data. As described earlier, a combination of user
behaviors and technical issues explain these results.

Therefore, the suitability of each category of a device depends
on the specific research question of a study. Studies that seek
precise measurement of outdoor activity and travel, such as
measuring outdoor physical activity, characterizing mental
health symptoms, or exposure to localized environmental
hazards, would benefit from the use of GPS devices. Conversely,
studies in which the aim is to account for time within buildings
at home or work, or document visits to particular places (such
as supermarkets, medical facilities, or fast food restaurants),
would benefit from the phone’s demonstrated greater precision
in recording indoor activities. For studies that only require the
general location and duration of indoor activities, mobile phones
may be a more practical data collection device than others that
are available to collect this type of information [3]. Furthermore,
the weaknesses of each device suggest steps that researchers
should take in their research protocols to minimize the associated
errors. Given the difficulty of syncing, alternative GPS devices
that do not require this step may reduce data losses, if available.

As described, the phone data often included straight-line features
that appear to connect points for which detailed locations were
obtained by the device. We speculate these lines may be
produced through a low data collection rate compared with GPS
watches at those times. Consequently, the trace data sometimes
included implausible travel routes, which leads us to conclude
that the device may have less accurate data for outdoor activities,
particularly those that involve travel. Researchers using similar
phone data in the future should develop procedures for
identifying and removing the straight lines from their datasets.
Alternatively, researchers could benefit from the development
of a tailored mobile phone app to log location data automatically;
this would allow researchers greater control over the nature of
the spatial data (such as specifying the desired data collection
rate) and allow survey responses to be linked with locations. At
the same time, this comes with trade-offs, as these apps will not
be adopted at a population level like Google Location History,
which could be used to gain new insights into mobility patterns
at a large scale.

Locational Privacy
Although our participants did not express concerns about the
privacy of their data, this was primarily because of the use of
the data for research purposes, accompanied by our use of ID
numbers [13]. Furthermore, in this paper, we included only
large-scale maps of the results to minimize the risk of
identification [61]. Nevertheless, in general, location tracking
has important privacy implications [61]. We acknowledge that

studies such as ours raise a variety of issues that, although did
not arise here, deserve greater attention from researchers
engaging in location tracking in health research studies [33].
These include special considerations for vulnerable populations
and what should be done if evidence of harm or illegal activities
is observed in participant data [33]. Finally, the paper provides
the opportunity to comment on broader privacy issues, as we
demonstrate the usefulness of the Google Location History data,
which are passively collected for many millions of users.
Although Google provides users with the ability to deactivate
and delete location history, the sensitivity of the information
raises important questions about how this information should
be managed in ways that minimize the risk of harm to
participants and protect their anonymity and confidentiality.

Study Limitations
Several limitations of this study should be kept in mind. First,
the difficulties that participants faced in using the GPS watch
may not persist with newer generations of wearable GPS
technology; this may reduce discrepancies in missing data.
Second, the straight-line errors concerning travel routes had a
differential impact based on the method of characterizing activity
space. The buffer methodology, which does not account for the
frequency of trips in any particular area, was particularly
sensitive to this issue. However, the kernel density analysis
somewhat reduced the effect of these features, particularly for
participants who collected the most data. Finally, this study was
also conducted with a small sample of relatively educated adults
in an urban environment, who were recruited through online
means. Therefore, user-related data accuracy difficulties may
be even greater in populations with less education and
technology experience. The generalizability of these results to
areas with lower Wi-Fi or cellular tower density (eg, rural areas)
is therefore unclear. Finally, although we are unaware of major
changes to the technologies here, future improvements to GPS
receivers or mobile phone location services may affect the future
generalizability of these results.

Conclusions
Health research increasingly uses fine-grained spatial data
gathered from mobile devices to evaluate relationships between
health, place, and mobility. Such research, which may be
conducted with wearable GPS devices or mobile phones,
requires accurate spatial data for analysis. This study reports a
direct comparison of the spatial information collected from each
of such devices during a field study involving 21 participants.
Mobile phones resulted in less missing data, spatial data closer
to known destination points, and larger activity spaces. In
contrast, the mobile phone data resulted in the recording of
outdoor travel inaccurately, including physical activities such
as walking. Therefore, the best device for health research
depends on the particular study objectives, and data generated
from both devices require careful analysis to ensure quality and
completeness.
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